(2012年高考江西卷理科20) (本題滿分13分)
已知三點O(0,0),A(-2,1),B(2,1),曲線C上任意一點M(x,y)滿足.
(1) 求曲線C的方程;
(2)動點Q(x0,y0)(-2<x0<2)在曲線C上,曲線C在點Q處的切線為l向:是否存在定點P(0,t)(t<0),使得l與PA,PB都不相交,交點分別為D,E,且△QAB與△PDE的面積之比是常數?若存在,求t的值。若不存在,說明理由。
科目:高中數學 來源: 題型:
(2012年高考(江西理))某農戶計劃種植黃瓜和韭菜,種植面積不超過50畝,投入資金不超過54萬元,假設種植黃瓜和韭菜的產量、成本和售價如下表
年產量/畝 | 年種植成本/畝 | 每噸售價 | |
黃瓜 | 4噸 | 1.2萬元 | 0.55萬元 |
韭菜 | 6噸 | 0.9萬元 | 0.3萬元 |
為使一年的種植總利潤(總利潤=總銷售收入-總種植成本)最大,那么黃瓜和韭菜的種植面積(單位:畝)分別為( 。
A.50,0 B.30.0 C.20,30 D.0,50
查看答案和解析>>
科目:高中數學 來源: 題型:
(2012年高考江西卷理科13)橢圓(a>b>0)的左、右頂點分別是A,B,左、右焦點分別是F1,F2。若|AF1|,|F1F2|,|F1B|成等比數列,則此橢圓的離心率為_______________.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com