已知橢圓C1的方程為
x2
4
+y2=1,雙曲線C2的左、右焦點分別是C1的左、右頂點,而C2的左、右頂點分別是C1的左、右焦點,求雙曲線C2的方程.
考點:雙曲線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:設(shè)出雙曲線的標(biāo)準(zhǔn)方程,根據(jù)根據(jù)橢圓方程求得雙曲線的左右頂點和焦點,進而求得雙曲線方程中的a和b,則雙曲線方程可得.
解答: 解:設(shè)雙曲線C2的方程為
x2
a2
-
y2
b2
=1(a>0,b>0),則a2=4-1=3,c2=4,
由a2+b2=c2,得b2=1.
故C2的方程為
x2
3
-y2=1.
點評:本題主要考查了橢圓、雙曲線方程與性質(zhì),考查學(xué)生的計算能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,△BCD中,∠BCD=90°,AB⊥平面BCD,E,F(xiàn)分別為AC,AD的中點.
求證:平面BEF⊥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2.BM⊥PD于M.
(1)求證:平面ABM⊥平面PCD;
(2)求直線PC與平面ABM所成的角的正切值;
(3)求點O到平面ABM的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C的極坐標(biāo)方程為:ρ=2
3
cosθ,直線的極坐標(biāo)方程為:2ρcosθ=
3
.則它們相交所得弦長等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以直角坐標(biāo)系原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系.已知曲線C1的極坐標(biāo)方程為ρ2+6ρcosθ-2ρsinθ+6=0,曲線C2的參數(shù)方程為
x=3cosθ
y=3sinθ
(θ為參數(shù)).
(Ⅰ)將曲線C1的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)若曲線C1與曲線C2交于A,B兩點,求|AB|的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a1=2,點(an,an+1)在函數(shù)f(x)=x2+2x的圖象上,其中n=1,2,3…
(1)證明數(shù)列{lg(1+an)}是等比數(shù)列
(2)設(shè)Tn=(1+a1)(1+a2)…(1+an),求Tn及數(shù)列{an}的通項
(3)記bn=
1
an
+
1
an+2
,設(shè)數(shù)列{bn}的前n項和Sn,證明
3
4
Sn
<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:ax+y=1在矩陣A=
12
01
對應(yīng)的變換作用下變?yōu)橹本l′:x+by=1.
(1)求實數(shù)a,b的值;
(2)求矩陣A的特征值與特征向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3-
3
2
(a+2)x2+6x+b在x=2處取得極值

(Ⅰ)求a的值及f(x)的單調(diào)區(qū)間
(Ⅱ)?x∈[0,3]使f(x)<b2,求b的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知動點P到直線l:x+4=0的距離與它到點M(2,0)的距離之差為2,記點P的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)問直線l上是否存在點Q,使得過點Q且斜率分別為k1,k2的兩直線與曲線C相切,同時滿足k1+2k2=0,若存在,求出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案