【題目】已知函數(shù) .
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)是否存在實(shí)數(shù),使得至少有一個(gè),使成立,若存在,求出實(shí)數(shù)的取值范圍;若不存在,說明理由.
【答案】(1)見解析(Ⅱ)或
【解析】試題分析:(1)首先求函數(shù)的導(dǎo)數(shù),再通分,得到 根據(jù)解不等式,得到函數(shù)單調(diào)區(qū)間;(2)首先求存在性命題的否定,即有成立,將不等式轉(zhuǎn)化為恒成立,設(shè) ,根據(jù)函數(shù)的導(dǎo)數(shù),分 ,求得函數(shù)的最小值,令最小值大于等于0,求得的取值范圍,再求其補(bǔ)集.
試題解析:(1)函數(shù)的定義域?yàn)?/span>,
1)當(dāng)時(shí),由得, 或,由得,
故函數(shù)的單調(diào)遞增區(qū)間為和,單調(diào)減區(qū)間為
2)當(dāng)時(shí), , 的單調(diào)增區(qū)間為
(Ⅱ)先考慮“至少有一個(gè),使成立”的否定“, 恒成立”。即可轉(zhuǎn)化為恒成立。
令,則只需在恒成立即可,
當(dāng)時(shí),在時(shí), ,在時(shí),
的最小值為,由得,
故當(dāng)時(shí), 恒成立,
當(dāng)時(shí), , 在不能恒成立,
當(dāng)時(shí),取,有, 在不能恒成立,
綜上所述,即或時(shí),至少有一個(gè),使成立。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù).
(1)討論的單調(diào)性;
(2)當(dāng)時(shí),設(shè)函數(shù)表示在區(qū)間上最大值與最小值的差,求在區(qū)間上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),若曲線在點(diǎn) 處的切線方程為.
(Ⅰ)求的解析式;
(Ⅱ)求證:在曲線上任意一點(diǎn)處的切線與直線和所圍成的三角形面積為定值,并求出此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市創(chuàng)業(yè)園區(qū)新引進(jìn)一家生產(chǎn)環(huán)保產(chǎn)品的公司,已知該環(huán)保產(chǎn)品每售出1盒的利潤(rùn)為0.3萬元,當(dāng)月未售出的環(huán)保產(chǎn)品,每盒虧損0.12萬元.根據(jù)統(tǒng)計(jì)資料,該環(huán)保產(chǎn)品的市場(chǎng)月需求量的頻率分布直方圖如圖所示.
(1)若該環(huán)保產(chǎn)品的月進(jìn)貨量為160盒,以(單位:盒,)表示該產(chǎn)品一個(gè)月內(nèi)的市場(chǎng)需求量,(單位:萬元)表示該公司生產(chǎn)該環(huán)保產(chǎn)品的月利潤(rùn).
①將表示為的函數(shù);
②根據(jù)頻率分布直方圖估計(jì)利潤(rùn)不少于39.6萬元的概率.
(2)在頻率分布直方圖的月需求量分組中,以各組的區(qū)間中點(diǎn)值代表該組的月需求量,當(dāng)月進(jìn)貨量為158箱時(shí),寫出月利潤(rùn)(單位:萬元)的所有可能值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知(cosx,2cosx),(2cosx,sinx),f(x).
(1)把f(x)的圖象向右平移個(gè)單位得g(x)的圖象,求g(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)與共線時(shí),求f(x)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中點(diǎn)。
求證:(1)PA∥平面BDE ;
(2)平面PAC平面BDE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AC=3,BC=4,AB=5,以AB所在直線為軸,三角形面旋轉(zhuǎn)一周形成一旋轉(zhuǎn)體,求此旋轉(zhuǎn)體的表面積和體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(12分)已知函數(shù)f(x)=
(1)判斷函數(shù)在區(qū)間[1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論.
(2)求該函數(shù)在區(qū)間[1,4]上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在發(fā)生某公共衛(wèi)生事件期間,有專業(yè)機(jī)構(gòu)認(rèn)為該事件在一段時(shí)間沒有發(fā)生在規(guī)模群體感染的標(biāo)志為“連續(xù)10天,每天新增疑似病例不超過7人”.根據(jù)過去10天甲、乙、丙、丁四地新增疑似病例數(shù)據(jù),一定符合該標(biāo)志的是
A. 甲地:總體均值為3,中位數(shù)為4 B. 乙地:總體均值為1,總體方差大于0
C. 丙地:中位數(shù)為2,眾數(shù)為3 D. 丁地:總體均值為2,總體方差為3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com