已知函數(shù).
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)當(dāng)時(shí),討論的單調(diào)性.
(1) 
(2)當(dāng)時(shí),在,單調(diào)遞減,在,單調(diào)遞增;
當(dāng)時(shí),在單調(diào)遞減
當(dāng)時(shí),在單調(diào)遞減,單調(diào)遞增;

試題分析:(1)利用切點(diǎn)處的導(dǎo)函數(shù)值是切線的斜率,應(yīng)用直線方程的點(diǎn)斜式即得;
(2)求導(dǎo)數(shù),
根據(jù)的不同取值情況,研究導(dǎo)數(shù)值的正負(fù),確定函數(shù)的單調(diào)性.
本題易錯(cuò),分類討論不全或重復(fù).
試題解析:(1)當(dāng)時(shí),,
此時(shí),            2分
,又,
所以切線方程為:,
整理得:;                     
(2),           6分
當(dāng)時(shí),,此時(shí),在,單調(diào)遞減,
,單調(diào)遞增;                         8分
當(dāng)時(shí),
當(dāng)時(shí)恒成立,
所以單調(diào)遞減;                            10分
當(dāng)時(shí),,此時(shí)在,單調(diào)遞減,單調(diào)遞增;                        12分
綜上所述:當(dāng)時(shí),單調(diào)遞減,單調(diào)遞增;
當(dāng)時(shí), 單調(diào)遞減,單調(diào)遞增;
當(dāng)時(shí)單調(diào)遞減.                         13分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù),函數(shù)是區(qū)間上的減函數(shù).
(1)求的最大值;
(2)若恒成立,求的取值范圍;
(3)討論關(guān)于的方程的根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(1)求曲線y=f(x)在(2,f(2))處的切線方程;
(2)若g(x)=f(x)一有兩個(gè)不同的極值點(diǎn).其極小值為M,試比較2M與一3的大小,并說(shuō)明理由;
(3)設(shè)q>p>2,求證:當(dāng)x∈(p,q)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(1)求的最小值;
(2)當(dāng)函數(shù)自變量的取值區(qū)間與對(duì)應(yīng)函數(shù)值的取值區(qū)間相同時(shí),這樣的區(qū)間稱為函數(shù)的保值區(qū)間.設(shè),試問(wèn)函數(shù)上是否存在保值區(qū)間?若存在,請(qǐng)求出一個(gè)保值區(qū)間;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)函數(shù)的導(dǎo)數(shù)的最大值為3,則的圖象的一條對(duì)稱軸的方程是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù),若函數(shù)恰有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍為     

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在用土計(jì)算機(jī)進(jìn)行的數(shù)學(xué)模擬實(shí)驗(yàn)中,一個(gè)應(yīng)用微生物跑步參加化學(xué)反應(yīng),其物理速度與時(shí)間的關(guān)系是,則( 。
A.有最小值   B.有最大值
C.有最小值D.有最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若函數(shù)f(x)=cos2,則f=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)的導(dǎo)數(shù)是(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案