【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.
(Ⅰ)求C;(Ⅱ)若c=,△ABC的面積為,求△ABC的周長.
【答案】(1) C= (2) △ABC的周長為+
【解析】試題分析:(1)由正弦定理,兩角和的正弦函數(shù)公式,三角形內(nèi)角和定理化簡已知可得2cosCsinC=sinC,結(jié)合范圍C∈(0,π),解得cosC=,可得C的值.(2)由三角形的面積公式可求ab=3,利用余弦定理解得a+b的值,即可得解△ABC的周長.
解析:
(Ⅰ)∵在△ABC中,0<C<π,∴sinC≠0
利用正弦定理化簡得:2cosC(sinAcosB+sinBcosA)=sinC,
整理得:2cosCsin(A+B)=sinC,
即2cosCsin(π﹣(A+B))=sinC,2cosCsinC=sinC
∴cosC=,∴C=
(Ⅱ)由余弦定理得3=a2+b2﹣2ab,
∴(a+b)2﹣3ab=3,
∵S= absinC= ab=, ∴ab=16,
∴(a+b)2﹣48=3,∴a+b=,
∴△ABC的周長為+ .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著經(jīng)濟(jì)的發(fā)展,某城市的市民收入逐年增長,表1是該城市某銀行連續(xù)五年的儲蓄存款額(年底余額):
表1
年份x | 2011 | 2012 | 2013 | 2014 | 2015 |
儲蓄存款額y(千億元) | 5 | 6 | 7 | 8 | 10 |
為了研究計算的方便,工作人員將表1的數(shù)據(jù)進(jìn)行了處理,令t=x-2 010,z=y-5,得到表2:
表2
時間代號t | 1 | 2 | 3 | 4 | 5 |
z | 0 | 1 | 2 | 3 | 5 |
(1)z關(guān)于t的線性回歸方程是________;y關(guān)于x的線性回歸方程是________;
(2)用所求回歸方程預(yù)測到2020年年底,該銀行儲蓄存款額可達(dá)________千億元.
(附:線性回歸方程=x+,其中=,=-)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)己知函數(shù)f(x)=
(1)求曲線y=f(x)在點(0,f(0))處的切線方程;
(2)求證:當(dāng)x∈(0,1)時,f(x)>2
(3)設(shè)實數(shù)k使得f(x)>k對x∈(0,1)恒成立,求k的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為坐標(biāo)原點, , 是橢圓上的點,且,設(shè)動點滿足.
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)若直線與曲線交于兩點,求三角形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點為極點, 軸的正半軸為極軸,建立極坐標(biāo)系,已知直線的參數(shù)方程為 (為參數(shù)),曲線的極坐標(biāo)方程是.
(1)寫出直線的普通方程和曲線的直角坐標(biāo)方程;
(2)設(shè)直線與曲線相交于兩點,點為的中點,點的極坐標(biāo)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的上、下、左、右四個頂點分別為x軸正半軸上的某點滿足.
(1)求橢圓的方程;
(2)設(shè)該橢圓的左、右焦點分別為,點在圓上,且在第一象限,過作圓的切線交橢圓于,求證:△的周長是定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1 ,在△ABC中,AB=BC=2, ∠B=90°,D為BC邊上一點,以邊AC為對角線做平行四邊形ADCE,沿AC將△ACE折起,使得平面ACE ⊥平面ABC,如圖2.
(1)在圖 2中,設(shè)M為AC的中點,求證:BM丄AE;
(2)在圖2中,當(dāng)DE最小時,求二面角A -DE-C的平面角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】園林管理處擬在公園某區(qū)域規(guī)劃建設(shè)一半徑為米圓心角為(弧度)的扇形景觀水池,其中為扇形的圓心,同時緊貼水池周邊建一圈理想的無寬度步道,要求總預(yù)算費用不超過萬元,水池造價為每平方米元,步道造價為每米元.
(1)當(dāng)和分別為多少時,可使廣場面積最大,并求出最大值;
(2)若要求步道長為米,則可設(shè)計出水池最大面積是多少.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2017·合肥市質(zhì)檢)已知點F為橢圓E: (a>b>0)的左焦點,且兩焦點與短軸的一個頂點構(gòu)成一個等邊三角形,直線與橢圓E有且僅有一個交點M.
(1)求橢圓E的方程;
(2)設(shè)直線與y軸交于P,過點P的直線l與橢圓E交于不同的兩點A,B,若λ|PM|2=|PA|·|PB|,求實數(shù)λ的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com