如圖是函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|
π
2
)的部分圖象,
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)x∈(-
π
2
,0)
時(shí),求函數(shù)的值域.
(1)由圖可知:A=3,
T
2
=
π
3
-(-
π
6
)=
π
2
,即T=π,
∴ω=2,
∴f(x)=3sin(2x+φ)…(2分)
又由圖可知:(-
π
6
,0)是五點(diǎn)作圖法中的第一點(diǎn),
∴2×(-
π
6
)+φ=0,即φ=
π
3
,…(4分)
∴f(x)=3sin(2x+
π
3
).…(5分)
(2)∵x∈(-
π
2
,0)
,
∴-
3
<2x+
π
3
π
3
,…(7分)
∴-1≤sin(2x+
π
3
)<
3
2
,即-3≤3sin(2x+
π
3
)<
3
3
2
.…(9分)
∴函數(shù)f(x)在x∈(-
π
2
,0)
上的值域是[-3,
3
3
2
).…(10分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知, ,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)=sin(
π
3
-x)
,則要得到其導(dǎo)函數(shù)y=f′(x)的圖象,只需將函數(shù)y=f(x)的圖象( 。
A.向左平移
3
個(gè)單位
B.向右平移
3
個(gè)單位
C.向左平移
π
2
個(gè)單位
D.向右平移
π
2
個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)x∈R,函數(shù)f(x)=cos(ωx+ϕ)(ω>0,-
π
2
<ϕ<0
)的最小正周期為π,且f(
π
4
)=
3
2

(Ⅰ)求ω和ϕ的值;
(Ⅱ)在給定坐標(biāo)系中作出函數(shù)f(x)在[0,π]上的圖象;
(Ⅲ)若f(x)>
2
2
,求x
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)圖象的一部分如圖所示:
(1)求f(x)的解析式;
(2)寫出f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

把函數(shù)f(x)=2sin(2x+φ)(0<φ<π)的圖象向左平移
π
6
個(gè)單位后得到偶函數(shù)g(x)的圖象.
(Ⅰ)求φ的值;
(Ⅱ)求函數(shù)h(x)=f(x-
π
12
)-g(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

函數(shù)f1(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的一段圖象過點(diǎn)(0,1),如圖所示.
(1)求函數(shù)f1(x)的表達(dá)式;
(2)將函數(shù)y=f1(x)的圖象向右平移個(gè)單位,得函數(shù)y=f2(x)的圖象,求y=f2(x)的最大值,并求出此時(shí)自變量x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=Asin(ωx+
π
6
)(x∈R,A>0,ω>0)的最小正周期為T=6π,且f(2π)=2
(1)求ω和A的值;
(2)設(shè)α,β∈[0,
π
2
],f(3α+π)=
16
5
,f(3β+
2
)=-
20
13
;求cos(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在△ABC中,∠A、∠B、∠C所對的邊長分別是a、b、c. 若sinC+sin(B-A)=sin2A,則△ABC的形狀為(  ).
A.等腰三角形            B. 直角三角形 
C.等腰直角三角形         D. 等腰三角形或直角三角形

查看答案和解析>>

同步練習(xí)冊答案