橢圓的左頂點M(1,0)恰為拋物線的焦點,將兩曲線方程聯(lián)立消去得一元二次方程,又由拋物線定義,。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線的頂點在原點,焦點在軸上,斜率為的直線交兩點,若,且以為直徑的圓經(jīng)過原點,求直線和拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線C:y2=4x.
(1)若橢圓左焦點及相應的準線與拋物線C的焦點F及準線l分別重合,試求橢圓短軸端點B與焦點F連線中點P的軌跡方程;
(2)若M(m,0)是x軸上的一定點,Q是(1)所求軌跡上任一點,試問|MQ|有無最小值?若有,求出其值;若沒有,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題





的坐標;
(2)已知A,B求點C使
(3)已知橢圓兩焦點F1,F2,離心率e=0.8。求此橢圓長軸上
兩頂點的坐標。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題



查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題


A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)離心率為的橢圓上有一點到橢圓兩焦點的距離和為.以橢圓的右焦點為圓心,短軸長為直徑的圓有切線為切點),且點滿足為橢圓的上頂點)。(I)求橢圓的方程;(II)求點所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
求適合下列條件的圓錐曲線方程:
(1).長軸長是短軸長的3倍,經(jīng)過點(3,0)的橢圓標準方程。
(2).已知雙曲線兩個焦點的坐標為,雙曲線上一點P到兩焦點的距離之差的絕對值等于6,求雙曲線標準方程.
(3).已知拋物線的頂點在原點,準線與其平行線x=2的距離為3,求拋物線標準方程.

查看答案和解析>>

同步練習冊答案