已知球心C(1,1,2),球的一條直徑的一個端點為A(-1,2,2),試求該球的表面積、體積及該直徑的另一個端點的坐標與表示球面的方程.

思路分析:已知球心和一個端點可求出球的半徑,再利用相應公式求出表面積、體積,直徑的另一個端點可由中點坐標公式求得,球面的方程可利用其幾何意義得出.

解:球的半徑R=AC=,

于是球的表面積為4πR2=20π;

球的體積為πR3=.

因直徑兩端點關于球心對稱,

設另一端點的坐標為(x,y,z),則

=1,x=3;

=1,y=0;

=2,z=2.

故直徑的另一個端點的坐標為(3,0,2).

設點P(x,y,z)為球面上的任一點,則PC=R=5,

即(x-1)2+(y-1)2+(z-2)2=5,它表示球面的方程.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:設計必修二數(shù)學人教A版 人教A版 題型:044

已知球心C(1,1,2),球的一條直徑的一個端點為A(-1,2,2),試求該球的表面積、體積及該直徑的另一個端點的坐標與表示球面的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:設計必修二數(shù)學人教A版 人教A版 題型:044

已知球心C(1,1,2),球的一條直徑的一個端點為A(-1,2,2),試求該球的表面積、體積及該直徑的另一個端點的坐標與表示球面的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:設計必修二數(shù)學北師版 北師版 題型:044

已知球心C(1,1,2),球的一條直徑的一個端點為A(-1,2,2),試求該球的表面積、體積及該直徑的另一個端點的坐標與表示球面的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知球心C(1,1,2),球的一條直徑的一個端點為A(-1,2,2),試求該球的表面積、體積及該直徑的另一個端點的坐標與表示球面的方程.

查看答案和解析>>

同步練習冊答案