9.$\sqrt{si{n}^{2}480°}$等于(  )
A.±$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$

分析 根據(jù)誘導(dǎo)公式化簡(jiǎn)即可.

解答 解:$\sqrt{si{n}^{2}480°}$=|sin480°|=|sin(360°+120°)|=sin120°=$\frac{\sqrt{3}}{2}$.
故選B

點(diǎn)評(píng) 本題考查了誘導(dǎo)公式的運(yùn)用和特殊三角函數(shù)值的記憶.比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,橢圓上一點(diǎn)$P(1,\frac{3}{2})$與橢圓右焦點(diǎn)的連線垂直于x軸.
(1)求橢圓C的方程;
(2)與拋物線y2=4x相切于第一象限的直線l,與橢圓C交于A,B兩點(diǎn),與x軸交于點(diǎn)M,線段AB的垂直平分線與y軸交于點(diǎn)N,求直線MN斜率的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知x<0,y<0,且3x+y=-2,則xy的最大值為( 。
A.$\frac{3}{2}$B.$\frac{4}{9}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.“因?yàn)橹笖?shù)函數(shù)y=ax(a>0且a≠1)是增函數(shù),而y=($\frac{1}{3}$)x是指數(shù)函數(shù),所以y=($\frac{1}{3}$)x是增函數(shù).”在上面的推理中(  )
A.大前提錯(cuò)誤B.小前提錯(cuò)誤
C.推理形式錯(cuò)誤D.大前提、小前提及推理形式都錯(cuò)誤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.設(shè)x<y<0,p=(x2+y2)(x-y),q=(x2-y2)(x+y),則p與q的大小關(guān)系為p>q.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.$\frac{sin(-340°)sin70°}{co{s}^{2}155°-si{n}^{2}25°}$的值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知橢圓$\frac{x^2}{25}+\frac{y^2}{b^2}$=1(0<b<5)的離心率$\frac{4}{5}$,則b的值等于( 。
A.1B.3C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知cos(π+α)•$cos(\frac{π}{2}+α)$=$\frac{60}{169}$,且$\frac{π}{4}$<α<$\frac{π}{2}$,求sin α與cos α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知|$\overrightarrow{a}$|=5,|$\overrightarrow$|=12,當(dāng)且僅當(dāng)m為何值時(shí),向量$\overrightarrow{a}$+m$\overrightarrow$與$\overrightarrow{a}$-m$\overrightarrow$互相垂直.

查看答案和解析>>

同步練習(xí)冊(cè)答案