【答案】
分析:(I)先由已知函數(shù)求其導(dǎo)數(shù),再根據(jù)函數(shù)f(x)在x=1處取得極值2,列出關(guān)于a,b的方程即可求得函數(shù)f(x)的解析式;
(II)求f′(x),令f′(x)>0,令f′(x)<0得函數(shù)f(x)的極小值,且當(dāng)x>1時,f(x)>0恒成立,得函數(shù)f(x)的最小值,利用二次函數(shù)的圖象,對a進(jìn)行分類討論,得出g(x)在[-1,1]上的最大值,由g(x)在[-1,1]上的最大值小于等于-2得a的范圍,結(jié)合分類時a的范圍得a的取值范圍.
解答:解:(I)f′(x)=
=
,
由題意可得
,
∴
,
∴
∴f(x)=
(II)f′(x)=
,令f'(x)=0,得x=-1或x=1
當(dāng)x變化時,f'(x),f(x)的變化情況如下表:
x | (-∞,-1) | -1 | (-1,1) | 1 | (1,+∞) |
f'(x) | - | | + | | - |
f(x) | 單調(diào)遞減 | 極小值 | 單調(diào)遞增 | 極大值 | 單調(diào)遞減 |
∴f(x)在x=-1處取得極小值f(-1)=-2,在x=1處取得極大值f(1)=2
又∵x>0時,f(x)>0,∴f(x)的最小值為-2(10分)∵對于任意的x
1∈R,總存在x
2∈[-1,1],使得g(x
2)≤f(x
1)∴當(dāng)x∈[-1,1]時,g(x)最小值不大于-2
又g(x)=x
2-2ax+a=(x-a)
2+a-a
2當(dāng)a≤-1時,g(x)的最小值為g(-1)=1+3a,由1+3a≤-2
得a≤-1(11分)
當(dāng)a≥1時,g(x)最小值為g(1)=1-a,由1-a≤-2,得a≥3
當(dāng)-1<a<1時,g(x)的最小值為g(a)=a-a
2由a-a
2≤-2,得a≤-1或a≥2,又-1<a<1,
所以此時a不存在.(12分)
綜上,a的取值范圍是(-∞,-1]∪[3,+∞)(13分).
點評:(I)考查了函數(shù)的求導(dǎo)及極值的概念,還考查了利用方程求解的思想.
(II)求二次函數(shù)在動軸定區(qū)間的最大值,數(shù)形結(jié)合,分類討論,求非初等函數(shù)的最值,求導(dǎo),利用函數(shù)的單調(diào)性.