不等式log 
1
2
(x2+1)<-1的解集為
 
考點:指、對數(shù)不等式的解法
專題:函數(shù)的性質(zhì)及應用
分析:考查對數(shù)函數(shù)y=log
1
2
t的單調(diào)性,根據(jù)題意,列出不等式(組),求出x的取值范圍即可.
解答: 解:∵log 
1
2
(x2+1)<-1,
∴x2+1>2,
即x2>1;
解得x>1或x<-1;
∴不等式的解集為(-∞,-1)∪(1,+∞).
故答案為:(-∞,-1)∪(1,+∞).
點評:本題考查了對數(shù)不等式的解法問題,解題時應根據(jù)題意,結(jié)合對數(shù)函數(shù)的單調(diào)性,列出不等式(組),求解即可,是基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

下列命題不正確的是(  )
A、
AB
+
BA
=0
B、
AB
-
AC
=
BC
C、
AB
+
BC
=
AC
D、
AC
-
BC
=
AB

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖的倒三角形數(shù)陣滿足:①第一行的第n 個數(shù),分別是1,3,5,7,9,…,2n-1; ②從第二行起,各行中的每一個數(shù)都等于它肩上的兩數(shù)之和; ③數(shù)陣共有n行;
問:第32行的第17個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

當0<a<2時,直線l1:ax-2y-2a+4=0與l2:2x+a2y-2a2-4=0和坐標軸成一個四邊形,要使圍成的四邊形面積最小,a應取何值?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某次圍棋比賽的決賽階段實行三番棋決定冠軍歸屬(即三局兩勝制,和棋判無效,加賽直至分出勝負).打入決賽的兩名選手甲、乙平時進行過多次對弈,有記錄的30局結(jié)果如下表:
  甲先 乙先
甲勝 10 9
乙勝 5 6
請根據(jù)表中的信息(用樣本頻率估計概率),回答下列問題:
(Ⅰ)如果比賽第一局由擲一枚硬幣的方式?jīng)Q定誰先,試求第一局甲獲勝的概率;
(Ⅱ)若第一局乙先,此后每局負者先,
 ①求甲以二比一獲勝的概率;
 ②該次比賽設(shè)冠軍獎金為40萬元,亞軍獎金為10萬元,如果冠軍“零封”對手(即2:0奪冠)則另加5萬元.求甲隊員參加此次決賽獲得獎金數(shù)X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

2013-2014第二學年度某校對高一年級課外活動學生在教室學習的情況進行了調(diào)查,其中抽查了高一(2)班的50名學生得到如下2×2列聯(lián)表:
在教室 不在教室 合計
6 24 30
14 6 20
合計 20 30 50
(1)根據(jù)獨立性檢驗的基本思想,約有多大的把握認為“在課外活動女生比男生更喜歡讀書”?
(2)若從高一(2)班抽出學生對老師進行問卷調(diào)查,用分層抽樣方法抽取5人,男生與女生各抽多少?
(3)若從抽出的5名學生中抽出兩名學生,按照某種方案進行抽取所得到的概率是
7
10
.寫出這種方案,并給出計算過程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-
a+1
2
x2+bx+a(a,b∈R),其導函數(shù)f′(x)的圖象過原點.
(1)當a=1時,求函數(shù)f(x)的圖象在x=3處的切線方程;
(2)若存在x<0,使得f′(x)=-9,求a的最大值;
(3)當a>-1時,確定函數(shù)f(x)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有3名男生,4名女生,在下列不同要求下,求不同的排列方法總數(shù).
(1)全體排成一行,其中甲只能在中間或者兩邊位置;
(2)全體排成一行,男生不能排在一起;
(3)全體排成一行,其中甲、乙、丙三人從左至右的順序不變;
(4)全體排成一行,甲、乙兩人中間必須有3人.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對任意x>0,都有a-x-|lnx|≤0成立,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習冊答案