【題目】

已知橢圓的離心率為,且點(diǎn)在橢圓上.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)若斜率為k的直線交橢圓A,B兩點(diǎn),求△OAB面積的最大值.

【答案】Ⅰ);(Ⅱ)4.

【解析】試題分析:根據(jù)題意列出關(guān)于 、 的方程組,結(jié)合性質(zhì) ,求出 、 ,即可得結(jié)果;(直線l的方程為ykxm,A(x1,y1),B(x2,y2),直線與曲線聯(lián)立,以OAB的面積S|m||x1x2|根據(jù)韋達(dá)定理,弦長(zhǎng)公式將三角形面積用 , 表示,換元求最值即可得結(jié)果.

試題解析:(Ⅰ)由已知得 , 解得 ,

橢圓的方程是.

(Ⅱ)設(shè)直線l的方程為ykxmA(x1,y1),B(x2,y2).

ykxm代入橢圓的方程,可得(14k2)x28kmx4m2160

Δ0,可得m2416k2,①

則有x1x2=-x1x2.

所以|x1x2|.

因?yàn)橹本ykxmy軸交點(diǎn)的坐標(biāo)為(0m),

所以OAB的面積S|m||x1x2|

設(shè)t,由①可知0t4,

因此S22,故S≤4,

當(dāng)且僅當(dāng)t2時(shí)取得最大值4.

所以OAB面積的最大值為4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=log (x2﹣ax+3)在(﹣∞,1)上單調(diào)遞增,則a的范圍是(
A.(2,+∞)
B.[2,+∞)
C.[2,4]
D.[2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù)y=f(x),如果存在區(qū)間[m,n],同時(shí)滿足下列條件:
1)f(x)在[m,n]上是單調(diào)的;
2)當(dāng)定義域是[m,n]時(shí),f(x)的值域也是[m,n],則稱[m,n]是該函數(shù)的“和諧區(qū)間”.若函數(shù)f(x)= (a>0)存在“和諧區(qū)間”,則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|x﹣a|﹣ +a,x∈[1,6],a∈R.
(1)若a=1,試判斷并證明函數(shù)f(x)的單調(diào)性;
(2)當(dāng)a∈(1,6)時(shí),求函數(shù)f(x)的最大值的表達(dá)式M(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= cosx(sinx+cosx).
(1)若0<α< ,且sinα= ,求f(α)的值;
(2)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)a1=2,an+1= ,bn=| |,n∈N* , 則數(shù)列{bn}的通項(xiàng)公式bn=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,拋物線C1:x2=4y,C2:x2=-2py(p>0).點(diǎn)M(x0,y0)在拋物線C2,過(guò)MC1的切線,切點(diǎn)為A,B(M為原點(diǎn)O時(shí),A,B重合于O).當(dāng)x0=1-時(shí),切線MA的斜率為-.

(1)p的值;

(2)當(dāng)MC2上運(yùn)動(dòng)時(shí),求線段AB中點(diǎn)N的軌跡方程(A,B重合于O時(shí),中點(diǎn)為O).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC的三個(gè)內(nèi)角A,B,C,滿足sinC=
(1)判斷△ABC的形狀;
(2)設(shè)三邊a,b,c成等差數(shù)列且SABC=6cm2 , 求△ABC三邊的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線經(jīng)過(guò)點(diǎn)M( ).
(1)如果此雙曲線的漸近線為 ,求雙曲線的標(biāo)準(zhǔn)方程;
(2)如果此雙曲線的離心率e=2,求雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案