(14分)已知,
(1)求函數(shù)f(x)的表達(dá)式?
(2)求函數(shù)f(x)的定義域?
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
已知函數(shù)
(1)當(dāng)時(shí),求的極值;
(2)當(dāng)時(shí),求的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題12分)
已知函數(shù),
(Ⅰ)分別求出、、、的值;
(Ⅱ)根據(jù)(Ⅰ)中所求得的結(jié)果,請(qǐng)寫(xiě)出與之間的等式關(guān)系,并證明這個(gè)等式關(guān)系;
(Ⅲ)根據(jù)(Ⅱ)中總結(jié)的等式關(guān)系,
請(qǐng)計(jì)算表達(dá)式
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),實(shí)數(shù)a,b為常數(shù)),
(1)若a=1,在(0,+∞)上是單調(diào)增函數(shù),求b的取值范圍;
(2)若a≥2,b=1,判斷方程在(0,1]上解的個(gè)數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題12分)已知函數(shù)的圖像關(guān)于原點(diǎn)對(duì)稱,并且當(dāng)時(shí),,試求在上的表達(dá)式,并畫(huà)出它的圖像,根據(jù)圖像寫(xiě)出它的單調(diào)區(qū)間。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)
設(shè)函數(shù)(,為常數(shù)),且方程有兩個(gè)實(shí)根為.
(1)求的解析式;
(2)證明:曲線的圖像是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè).
(1)若在上的最大值是,求的值;
(2)若對(duì)于任意,總存在,使得成立,求的取值范圍;
(3)若在上有解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分14分)已知函數(shù)
(1)若,求x的值;
(2)若對(duì)于恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
對(duì)定義在上,并且同時(shí)滿足以下兩個(gè)條件的函數(shù)稱為H函數(shù).
① 對(duì)任意的,總有;
② 當(dāng)時(shí),總有成立.
已知函數(shù)與是定義在上的函數(shù).
(1)試問(wèn)函數(shù)是否為H函數(shù)?并說(shuō)明理由;
(2)若函數(shù)是H函數(shù),求實(shí)數(shù)a的值;
(3)在(2)的條件下,若方程有解,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com