以下幾個命題中:其中真命題的序號為_________________(寫出所有真命題的序號)
①設A、B為兩個定點,k為非零常數(shù),,則動點P的軌跡為雙曲線;
②過定圓C上一定點A作圓的動弦AB,O為坐標原點,若則動點P的軌跡為橢圓;
③雙曲線有相同的焦點;
④在平面內(nèi),到定點的距離與到定直線的距離相等的點的軌跡是拋物線.

試題分析:因為到兩定點距離差的絕對值為一個小于兩定點間距離的常數(shù)的點的軌跡是雙曲線,所以①不對.因為所以中點.由于垂直于,所以動點P的軌跡為以為直徑的圓,因此②不對.雙曲線的焦點都在軸上,且半焦距都為,所以③對. 因為點在直線上,所以滿足條件的點的軌跡是過點且與直線的直線,所以④不對.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的右焦點為,短軸的端點分別為,且.
(1)求橢圓的方程;
(2)過點且斜率為的直線交橢圓于兩點,弦的垂直平分線與軸相交于點.設弦的中點為,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的右焦點為,點在橢圓上.

(1)求橢圓的方程;
(2)點在圓上,且在第一象限,過作圓的切線交橢圓于,兩點,問:△的周長是否為定值?如果是,求出定值;如果不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓,直線是直線上的線段,且是橢圓上一點,求面積的最小值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

直線l與橢圓+=1(a>b>0)交于A(x1,y1),B(x2,y2)兩點,已知m=(ax1,by1),n=(ax2,by2),若m⊥n且橢圓的離心離e=,又橢圓經(jīng)過點(,1),O為坐標原點.
(1)求橢圓的方程.
(2)試問:△AOB的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知雙曲線的一條漸近線方程是,它的一個焦點在拋物線的準線上,點是雙曲線右支上相異兩點,且滿足為線段的中點,直線的斜率為
(1)求雙曲線的方程;
(2)用表示點的坐標;
(3)若的中垂線交軸于點,直線軸于點,求的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若存在過點的直線與曲線都相切,則等于 (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

對于曲線=1,給出下面四個命題:
(1)曲線不可能表示橢圓;
(2)若曲線表示焦點在x軸上的橢圓,則1<;
(3)若曲線表示雙曲線,則<1或>4;
(4)當1<<4時曲線表示橢圓,其中正確的是(      )
A.(2)(3)B.(1)(3)C.(2)(4)D.(3)(4)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知F是橢圓C:+=1(a>b>0)的右焦點,點P在橢圓C上,線段PF與圓(x-2+y2=相切于點Q,且=2,則橢圓C的離心率等于(  )
A.B.C.D.

查看答案和解析>>

同步練習冊答案