精英家教網 > 高中數學 > 題目詳情

已知函數

(1)若函數處取得極大值,求函數的單調區(qū)間

(2)若對任意實數,不等式恒成立,求的取值范圍

 

【答案】

(1)   函數的增區(qū)間為 減區(qū)間為;(2)。

【解析】

試題分析:(1) ,且在處取極大值,則

,解得

時,,在處取極小值

時,,在處取極大值

所以  函數的增區(qū)間為 減區(qū)間為

(2)因為,則

即為

則有恒成立,則

解得:

考點:應用導數研究函數的單調性,不等式恒成立問題。

點評:中檔題,本題屬于導數的基本應用問題。在某區(qū)間,導數值非負,函數為增函數,導數值非正,函數為減函數。涉及不等式恒成立問題,往往通過構造函數,確定函數的最值,達到解題目的。

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=loga
2m-1-mxx+1
(a>0,a≠1)
是奇函數,定義域為區(qū)間D(使表達式有意義的實數x 的集合).
(1)求實數m的值,并寫出區(qū)間D;
(2)若底數a>1,試判斷函數y=f(x)在定義域D內的單調性,并說明理由;
(3)當x∈A=[a,b)(A⊆D,a是底數)時,函數值組成的集合為[1,+∞),求實數a、b的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=px-
px
-2lnx、
(Ⅰ)若p=3,求曲f9想)在點(1,f(1))處的切線方程;
(Ⅱ)若p>0且函f(x)在其定義域內為增函數,求實數p的取值范圍;
(Ⅲ)若函數y=f(x)在x∈(0,3)存在極值,求實數p的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=ax3+bx+c為R上的奇函數,且當x=1時,有極小值-1;函g(x)=-
1
2
x3+
3
2
x+t-
3
t
(t∈R,t≠0)

(1)求函數f(x)的解析式;
(2)若對于任意x∈[-2,2],恒有f(x)>g(x),求t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
1
2
x2-3x-
3
4
.定義函數f(x)與實數m的一種符號運算為m?f(x)=f(x)•[f(x+m)-f(x)].
(1)求使函數值f(x)大于0的x的取值范圍;
(2)若g(x)=4?f(x)+
7
2
x2
,求g(x)在區(qū)間[0,4]上的最大值與最小值;
(3)是否存在一個數列{an},使得其前n項和Sn=4?f(n)+
7
2
n2
.若存在,求出其通項;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=logax(a>0,且a≠1)自變量與函數值的部分對應值如下表:
x 2 1 0.25
f(x) -1 0 2
則a=
1
2
1
2
;若函數g(x)=xf(x),則滿足條件g(x)>0的x的集合為
{x|0<x<1}
{x|0<x<1}

查看答案和解析>>

同步練習冊答案