某人有樓房一幢,室內(nèi)面積共180m2,擬分隔成兩類(lèi)房間作為旅游客房.大房間每間面積為18m2,可住游客5名,每名游客每天住宿費(fèi)為40元;小房間每間面積為15m2,可住游客3名,每名游客每天住宿費(fèi)為50元;裝修大房間每間需1000元,裝修小房間每間需600元.如果他只能籌款8000元用于裝修,且游客能住滿(mǎn)客房,他應(yīng)隔出大房間和小房間各多少間,能獲得最大收益?最大收益是多少?
分析:先設(shè)隔出大、小房間分別為x間、y間,收益為Z元,寫(xiě)出約束條件、目標(biāo)函數(shù),欲求收入最大值的范圍,即求可行域中的最優(yōu)解,在線性規(guī)劃的解答題中建議使用直線平移法求出最優(yōu)解,即將目標(biāo)函數(shù)看成是一條直線,分析目標(biāo)函數(shù)Z與直線截距的關(guān)系,進(jìn)而求出最優(yōu)解.注意:x、y必須是整數(shù),最后要將所求最優(yōu)解還原為實(shí)際問(wèn)題.
解答:解:設(shè)隔出大、小房間分別為x間、y間,
收益為Z元?jiǎng)tZ=200x+150y,其中x、y滿(mǎn)足
18x+15y≤180
1000x+600y≤8000
x∈N,y∈N

如圖所示,
由圖解法易得Z=200x+150y過(guò)點(diǎn)A(20/7,60/7)時(shí),目標(biāo)函數(shù)Z取得最大值.
但x、y必須是整數(shù),還需在可行區(qū)域內(nèi)找出使目標(biāo)函數(shù)Z取得最大值的整點(diǎn).顯然目標(biāo)函數(shù)Z取得最大值的整點(diǎn)一定是分布在可行區(qū)域的右上側(cè),則利用枚舉法即可求出整點(diǎn)最優(yōu)解.
這些整點(diǎn)有:(0,12),(1,10),(2,9),(3,8),(4,6),(5,5),(6,3),(7,1),(8,0),分別代入Z=200x+150y,逐一驗(yàn)證,可得取整點(diǎn)(0,12)或(3,8)時(shí),
Zmax=200×0+150×12=200×3+150×8=1800(元).
所以要獲得最大收益,有兩種方案:只隔出小房間12間;或隔出大房間3間,小房間8間.
答:只隔出小房間12間;或隔出大房間3間,小房間8間,能獲得最大收益,最大收益是1800元.
點(diǎn)評(píng):本題主要考查了簡(jiǎn)單線性規(guī)劃的應(yīng)用.在解決線性規(guī)劃的應(yīng)用題時(shí),其步驟為:①分析題目中相關(guān)量的關(guān)系,列出不等式組,即約束條件⇒②由約束條件畫(huà)出可行域⇒③分析目標(biāo)函數(shù)Z與直線截距之間的關(guān)系⇒④使用平移直線法求出最優(yōu)解⇒⑤還原到現(xiàn)實(shí)問(wèn)題中.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某人有樓房一幢,室內(nèi)面積共計(jì)180m2,擬分割成兩類(lèi)房間作為旅游客房,大房間每間面積為18m2,可住游客5名,每名游客每天住宿費(fèi)40元;小房間每間面積為15m2,可以住游客3名,每名游客每天住宿費(fèi)50元;裝修大房間每間需要1000元,裝修小房間每間需要600元.如果他只能籌款8000元用于裝修,且游客能住滿(mǎn)客房,他應(yīng)隔出大房間和小房間各多少間,每天能獲得最大的房租收益?(注:設(shè)分割大房間為x間,小房間為y間,每天的房租收益為z元)
(1)寫(xiě)出x,y所滿(mǎn)足的線性約束條件;
(2)寫(xiě)出目標(biāo)函數(shù)的表達(dá)式;
(3)求x,y各為多少時(shí),每天能獲得最大的房租收益?每天能獲得最大的房租收益是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某人有樓房一幢,室內(nèi)面積共計(jì)180m2,擬分割成兩類(lèi)房間作為旅游客房,大房間每間面積為18m2,可住游客5名,每名游客每天住宿費(fèi)40元;小房間每間面積為15m2,可以住游客3名,每名游客每天住宿費(fèi)50元;裝修大房間每間需要1000元,裝修小房間每間需要600元.如果他只能籌款8000元用于裝修,且假定游客能住滿(mǎn)客房,他應(yīng)隔出大房間和小房間各多少間,才能獲得最大收益?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某人有樓房一幢,室內(nèi)面積共180㎡,擬分隔兩類(lèi)房間作為旅游客房.大每間面積為18㎡,可住游客5名,每名游客每天住宿費(fèi)為40元;小房間每間面積為15㎡,可住游客3名,每名游客每天住宿費(fèi)為50元;裝修大房間每間需1000元,裝修小房間每間需600元.如果他只能籌款8000元用于裝修,且游客能住滿(mǎn)客房,他應(yīng)隔出大房間和小房間各多少間,能獲得最大收益?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆福建省福州外國(guó)語(yǔ)學(xué)校高二上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題14分)某人有樓房一幢,室內(nèi)面積共計(jì)180m2,擬分割成兩類(lèi)房間作為旅游客房,大房間每間面積為18m2,可住游客5名,每名游客每天住宿費(fèi)40元;小房間每間面積為15m2,可以住游客3名,每名游客每天住宿費(fèi)50元;裝修大房間每間需要1000元,裝修小房間每間需要600元.如果他只能籌款8000元用于裝修,且游客能住滿(mǎn)客房,他應(yīng)隔出大房間和小房間各多少間,每天能獲得最大的房租收益?(注:設(shè)分割大房間為x間,小房間為y間,每天的房租收益為z元)

(1)寫(xiě)出x,y所滿(mǎn)足的線性約束條件;  

(2)寫(xiě)出目標(biāo)函數(shù)的表達(dá)式;

(3)求x,y各為多少時(shí),每天能獲得最大的房租收益?每天能獲得最大的房租收益是多少?

 

查看答案和解析>>

同步練習(xí)冊(cè)答案