【答案】
分析:①②可以根據(jù)偶函數(shù)和奇函數(shù)的定義進(jìn)行證明;
③根據(jù)對(duì)數(shù)函數(shù)的性質(zhì)以及絕對(duì)值的性質(zhì)進(jìn)行求解;
④可以根據(jù)f(2-x)=f(2+x),求出其對(duì)稱軸,有最小值,開(kāi)口向上,利用圖象進(jìn)行求解;
⑤根據(jù)在R上的奇函數(shù)f(x),有f(3+x)=-f(x),求出其周期后進(jìn)行判斷;
解答:解:①f(x)的圖象與f(-x),對(duì)任意的(a,f(a))在f(x)的圖象上,可得關(guān)于y軸對(duì)稱的點(diǎn)(-a,f(a))在f(-x)的圖象上,故①正確;
②f(x)的圖象與-f(-x)的圖象,對(duì)任意的(a,f(a))在f(x)的圖象上,可得關(guān)于原點(diǎn)對(duì)稱的點(diǎn)(-a,-f(a))在-f(-x)的圖象上,故②正確;
③y=|lgx|可得定義域?yàn)椋簕x|x>0},y=lg|x|的定義域?yàn)閧x|x≠0},故③錯(cuò)誤;
④二次函數(shù)f(x)滿足f(2-x)=f(2+x),對(duì)稱軸為x=
=2,f(x)有最小值,故函數(shù)開(kāi)口向上,可知f(0)=f(4),f(x)在(2,+∞)上為增函數(shù),∴f(0)=f(4)<f(5),故④正確;
⑤定義在R上的奇函數(shù)f(x),可得f(0)=0,
∵有f(3+x)=-f(x),可得f(x+3)=-f(x+6),可得f(x)=f(x+6),其周期為T(mén)=6,
∴f(2010)=f(335×6)=f(0)=0,故⑤正確;
故答案為①②④⑤;
點(diǎn)評(píng):此題主要考查命題的真假命題的判定及其應(yīng)用,考查了對(duì)數(shù)函數(shù)的性質(zhì)以及奇函數(shù)的性質(zhì),是一道基礎(chǔ)題;