【題目】設函數(shù)
當時,求函數(shù)的單調(diào)區(qū)間;
令其圖象上任意一點處切線的斜率恒成立,求實數(shù)的取值范圍;
當時,令若與的圖象有兩個交點,求證:
【答案】(1)單增區(qū)間為單減區(qū)間為.(2)(3)見解析
【解析】
試題(1)先求導函數(shù),再求導函數(shù)在定義區(qū)間上零點,列表分析導函數(shù)符號變化規(guī)律,確定函調(diào)單調(diào)區(qū)間(2)先根據(jù)導數(shù)幾何意義得不等式,再利用參變分離法將不等式轉化為對應函數(shù)最值最大值 ,根據(jù)二次函數(shù)最值求得實數(shù)的取值范圍;(3)本小題較難,需作兩次構造:一是消去a,構造以為自變量的函數(shù),根據(jù)導數(shù)得其單調(diào)性,利用基本不等式得到二是構造利用導數(shù)易得單調(diào)性,可得,即得
試題解析:解:(1)定義域為,
,
令解得,令解得,
∴的單增區(qū)間為單減區(qū)間為.
(2)
∴即
令,∴在上單調(diào)遞增,
∴∴,∴
(3)定義域
∴①,②
①+②得即,③
①-②得即,④
由③④得,不妨設,記,
令∴
∴在上單調(diào)遞增,∴
∴即∴
∴
∴即
令∴∴在上單調(diào)遞增.
又∴
即∴
科目:高中數(shù)學 來源: 題型:
【題目】已知點P(1,3),Q(1,2).設過點P的動直線與拋物線y=x2交于A,B兩點,直線AQ,BQ與該拋物線的另一交點分別為C,D.記直線AB,CD的斜率分別為k1,k2.
(1)當時,求弦AB的長;
(2)當時,是否為定值?若是,求出該定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)討論函數(shù)在定義域內(nèi)的極值點的個數(shù);
(2)設,若不等式對任意恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】邗江中學高二年級某班某小組共10人,利用寒假參加義工活動,已知參加義工活動次數(shù)為1,2,3的人數(shù)分別為3,3,4.現(xiàn)從這10人中選出2人作為該組代表參加座談會.
(1)記“選出2人參加義工活動的次數(shù)之和為4”為事件,求事件發(fā)生的概率;
(2)設為選出2人參加義工活動次數(shù)之差的絕對值,求隨機變量的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 的上下兩個焦點分別為, ,過點與軸垂直的直線交橢圓于、兩點, 的面積為,橢圓的離心力為.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)已知為坐標原點,直線: 與軸交于點,與橢圓交于, 兩個不同的點,若存在實數(shù),使得,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)學家歐拉在1765年提出:三角形的外心、重心位于同一直線上,這條直線被后人稱之為三角形的歐拉線,若的頂點,,且的歐拉線的方程為.
(1)求外心(外接圓圓心)的坐標;
(2)求頂點的坐標.
(注:如果三個頂點坐標分別為,,,則重心的坐標是.)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從柳州鐵一中高二男生中隨機選取100名學生,將他們的體重(單位:)數(shù)據(jù)繪制成頻率分布直方圖,如圖所示.
(1)估計該校的100名同學體重的平均值和方差(同一組數(shù)據(jù)用該組區(qū)間的中點值代表);
(2)若要從體重在內(nèi)的兩組男生中,用分層抽樣的方法選取5人,再從這5人中隨機抽取2人,求被抽取的兩位同學來自不同組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,長方體ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,點E是線段AB中點.
(1)證明:D1E⊥CE;
(2)求二面角D1﹣EC﹣D的大小的余弦值;
(3)求A點到平面CD1E的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com