【題目】已知函數(shù),

)求的值.

)求函數(shù)在區(qū)間上的最大值和最小值,及相應(yīng)的的值.

)求函數(shù)在區(qū)間的單調(diào)區(qū)間.

【答案】時(shí), 時(shí), .(上,

單調(diào)增區(qū)間,單調(diào)減區(qū)間

【解析】試題分析:利用兩角和與差的余弦公式,二倍角公式化簡(jiǎn),則即得解 ,結(jié)合正弦函數(shù)圖像得,則及在區(qū)間上的最大值和最小值,及相應(yīng)的對(duì)應(yīng)值易得解,

由正弦函數(shù)圖象知,當(dāng)時(shí),即時(shí), 單調(diào)遞減,當(dāng)時(shí),即時(shí), 單調(diào)遞增,則在區(qū)間的單調(diào)區(qū)間得解.

試題解析:

,

,

,

,

,

當(dāng)時(shí), ,

此時(shí)

當(dāng)時(shí), ,,

此時(shí)

,

由正弦函數(shù)圖象知,

當(dāng)時(shí),

時(shí), 單調(diào)遞減,

當(dāng)時(shí),

時(shí), 單調(diào)遞增.

單調(diào)減區(qū)間為,

單調(diào)增區(qū)間為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】今有一組數(shù)據(jù)如下表:

1

2

3

4

5

6

4

5

6

7

8

9

90

84

83

m

75

68

由最小二乘法求得點(diǎn) 的回歸直線(xiàn)方程是,其中.

(Ⅰ)求m的值,并求回歸直線(xiàn)方程;

(Ⅱ)設(shè),我們稱(chēng)為點(diǎn)的殘差,記為.

從所給的點(diǎn) 中任取兩個(gè),求其中有且只有一個(gè)點(diǎn)的殘差絕對(duì)值不大于1的概率.

參考公式: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:極坐標(biāo)與參數(shù)方程

在極坐標(biāo)系中,已直曲線(xiàn),將曲線(xiàn)C上的點(diǎn)向左平移一個(gè)單位,然后縱坐標(biāo)不變,橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,得到曲線(xiàn)C1,又已知直線(xiàn),且直線(xiàn)C1交于A、B兩點(diǎn),

1求曲線(xiàn)C1的直角坐標(biāo)方程,并說(shuō)明它是什么曲線(xiàn);

2)設(shè)定點(diǎn), 求的值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列是正整數(shù)的任一排列,且同時(shí)滿(mǎn)足以下兩個(gè)條件:

;②當(dāng)時(shí), ().

記這樣的數(shù)列個(gè)數(shù)為.

(I)寫(xiě)出的值;

(II)證明不能被4整除.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)Cy2=2px(p>0)的焦點(diǎn)F與橢圓Γy2=1的一個(gè)焦點(diǎn)重合,點(diǎn)M(x0,2)在拋物線(xiàn)上,過(guò)焦點(diǎn)F的直線(xiàn)l交拋物線(xiàn)于AB兩點(diǎn)

()求拋物線(xiàn)C的方程以及|MF|的值;

()記拋物線(xiàn)C的準(zhǔn)線(xiàn)與x軸交于點(diǎn)H,試問(wèn)是否存在常數(shù)λR,使得|HA|2+|HB|2都成立?若存在,求出實(shí)數(shù)λ的值; 若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是梯形, , , ,側(cè)面底面.

(1)求證:平面平面;

(2)若,且三棱錐的體積為,求側(cè)面的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

)當(dāng)為自然對(duì)數(shù)的底數(shù))時(shí),求的極小值;

Ⅱ)若函數(shù)存在唯一零點(diǎn),求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在R上的偶函數(shù)f(x)滿(mǎn)足f(x+1)=-f(x)且f(x)在[-1,0]上是增函數(shù),給出下列四個(gè)命題:

f(x)是周期函數(shù);②f(x)的圖象關(guān)于x=1對(duì)稱(chēng);③f(x)在[1,2]上是減函數(shù);④f(2)=f(0).

其中正確命題的序號(hào)是____________.(請(qǐng)把正確命題的序號(hào)全部寫(xiě)出來(lái))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)有甲、乙兩套設(shè)備生產(chǎn)同一種產(chǎn)品,為了檢測(cè)兩套設(shè)備的生產(chǎn)質(zhì)量情況,隨機(jī)從兩套設(shè)備生產(chǎn)的大量產(chǎn)品中各抽取了50件產(chǎn)品作為樣本,檢測(cè)一項(xiàng)質(zhì)量指標(biāo)值,若該項(xiàng)質(zhì)量指標(biāo)值落在內(nèi),則為合格品,否則為不合格品. 表1是甲套設(shè)備的樣本的頻數(shù)分布表,圖1是乙套設(shè)備的樣本的頻率分布直方圖.

表1:甲套設(shè)備的樣本的頻數(shù)分布表

質(zhì)量指標(biāo)值

[95,100)

[100,105)

[105,110)

[110,115)

[115,120)

[120,125]

頻數(shù)

1

4

19

20

5

1

圖1:乙套設(shè)備的樣本的頻率分布直方圖

(1)填寫(xiě)下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有90%的把握認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與甲、乙兩套設(shè)備的選擇有關(guān);

<menu id="y10r1"></menu>
<dfn id="y10r1"><code id="y10r1"></code></dfn>

    甲套設(shè)備

    乙套設(shè)備

    合計(jì)

    合格品

    不合格品

    合計(jì)

    ,求的期望.

    附:

    P(K2k0)

    0.15

    0.10

    0.050

    0.025

    0.010

    k0

    2.072

    2.706

    3.841

    5.024

    6.635

    .

    查看答案和解析>>

    同步練習(xí)冊(cè)答案