是否存在兩個(gè)銳角α,β滿足.
(1)α+2β=
3
;
(2)tan
α
2
•tanβ=2-
3
同時(shí)成立,若存在,求出α,β的值;若不存在,說(shuō)明理由.
分析:由(1)得
α
2
+β=
π
3
,∴
3
=tan(
α
2
+β)=
tan
α
2
+tanβ
1-tan
α
2
tanβ
,tan
α
2
+tanβ=3-
3
tan
α
2
•tanβ=2-
3
聯(lián)立解得tan
α
2
=1或tanβ=1(∵0<
α
2
π
4
,∴tan
α
2
≠1
,舍去),所以tanβ=1,解出α和β即可.
解答:解:由(1)得
α
2
+β=
π
3
,∴
3
=tan(
α
2
+β)=
tan
α
2
+tanβ
1-tan
α
2
tanβ
,得tan
α
2
+tanβ=3-
3
,又因?yàn)?span dealflag="1" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">tan
α
2
•tanβ=2-
3

∴將tan
α
2
=
2-
3
tanβ
代入得tanβ=1;將tanβ=
2-
3
tan
α
2
得tan
α
2
=1(∵0<
α
2
π
4
,∴tan
α
2
≠1
,舍去),
∴tanβ=1
α=
π
6
β=
π
4
為所求滿足條件的兩個(gè)銳角.
點(diǎn)評(píng):考查學(xué)生運(yùn)用兩角和與差的正切函數(shù)公式的能力,應(yīng)用任意角三角函數(shù)定義解決數(shù)學(xué)問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

是否存在兩個(gè)銳角α和β使得兩個(gè)條件:
α+β=
3
   ②tan
α
2
tan
β
2
=2-
3
 同時(shí)成立?若存在,求出α和β的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

是否存在兩個(gè)銳角α,β滿足.
(1)α+2β=
3

(2)tan
α
2
•tanβ=2-
3
同時(shí)成立,若存在,求出α,β的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年湖北省武漢二中高一(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

是否存在兩個(gè)銳角α,β滿足.
(1);
(2)同時(shí)成立,若存在,求出α,β的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:高考數(shù)學(xué)一輪復(fù)習(xí)必備(第29課時(shí)):第四章 三角函數(shù)-兩角和與差的三角函數(shù)(解析版) 題型:解答題

是否存在兩個(gè)銳角α,β滿足.
(1)
(2)同時(shí)成立,若存在,求出α,β的值;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案