關于f(x)=3sin(2x+
π
4
)有以下命題,其中正確命題的個數(shù)( 。
①若f(x1)=f(x2)=0,則x1-x2=kπ(k∈Z);
②f(x)圖象與g(x)=3cos(2x-
π
4
)圖象相同;
③f(x)在區(qū)間[-
8
,-
8
]上是減函數(shù);
④f(x)圖象關于點(-
π
8
,0)對稱.
A、0B、1C、2D、3
考點:函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:考查f(x)=3sin(2x+
π
4
)的零點、周期性、對稱性、單調(diào)性,可得結(jié)論.
解答: 解:關于f(x)=3sin(2x+
π
4
),由于它的周期為π,相鄰的兩個零點相差半個周期,
故若f(x1)=f(x2)=0,則x1-x2=k•
π
2
(k∈Z),故①不正確.
由于g(x)=3cos(2x-
π
4
)=3sin(2x-
π
4
+
π
2
)=f(x)=3sin(2x+
π
4
),故②正確.
由2kπ+
π
2
≤2x+
π
4
≤2kπ+
2
,k∈z,求得 kπ+
π
8
≤x≤kπ+
8
,
故函數(shù)f(x)的減區(qū)間為[kπ+
π
8
≤x≤kπ+
8
],k∈z,故f(x)在區(qū)間[-
8
,-
8
]上是減函數(shù),
故③正確.
把x=-
π
8
代入f(x)的解析式求得f(x)=0,可得f(x)圖象關于點(-
π
8
,0)對稱,故④正確.
故選:D.
點評:本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象的零點、周期性、對稱性、單調(diào)性,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知正三棱柱ABC-A1B1C1底面邊長是10,高是12,過底面一邊AB,作與底面ABC成60°角的截面面積是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
1
1-x
-2sinπx在區(qū)間[-2,4]上的所有零點之和等于(  )
A、2B、6C、8D、10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正三棱錐S-ABC的所有棱長均為2,則側(cè)面與底面所成二面角的余弦為( 。
A、
2
2
3
B、-
2
2
3
C、
1
3
D、-
1
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列給出的賦值語句中,正確的是( 。
A、3=AB、M=-3*M
C、B=A=2D、x+y=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若變量x,y滿足約束條件
y≤x
x+y≤1
y≥-1
,則z=
y+3
x+2
取得的最大值是( 。
A、2
B、
1
2
C、
3
2
D、
7
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知不等式組
y≤x
x+y≤1
y≥-1
,表示的三角形區(qū)域為M,過該區(qū)域三頂點的圓內(nèi)部記為N,在N中隨機取一點,則該點取自區(qū)域M的概率為( 。
A、
3
B、
2
π
C、
1
D、
1
π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

以下三個命題中:
①從勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每10分鐘從中抽取一件產(chǎn)品進行某項指標檢測,這樣的抽樣是分分層抽樣;
②兩個隨機變量的線性相關性越強,則相關系數(shù)的絕對值越接近于1;
③在某項測量中,測量結(jié)果ξ服從正態(tài)分布N(1,σ2)(σ>0).若ξ在(0,1)內(nèi)取值的概率為0.4,則ξ在(0,2)內(nèi)取值的概率為0.8.
其中真命題的個數(shù)為(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若點P(x,y)在橢圓
x2
4
+
y2
3
=1上,則x的范圍是( 。
A、[-4,4]
B、[-2,2]
C、[-3,3]
D、[-
3
3
]

查看答案和解析>>

同步練習冊答案