已知函數(shù)f(x)=
2x
,則f(x)在( 。
A、(-∞,0)上單調遞增
B、(0,+∞)上單調遞增
C、(-∞,0)上單調遞減
D、(0,+∞)上單調遞減
考點:函數(shù)單調性的判斷與證明
專題:函數(shù)的性質及應用
分析:根據(jù)單調函數(shù)的定義,利用定義直接證明,或利用導數(shù)判斷也可以.
解答: 解:∵f(x)=
2x
=
2
x
∴x∈[0,+∞),x>0時,f′(x)=
x
2x
>0,∴f(x)在[0,+∞0上是遞增函數(shù).
故選:B
點評:本題考查函數(shù)的單調區(qū)間,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

證明:函數(shù)f(x)=x+
1
x
在(0,1)上為減函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若定義在R上的函數(shù)f(x)是奇函數(shù),f(x-2)是偶函數(shù),且當0<x≤2時,f(x)=
3x
,則方程f(x)=f(3)在區(qū)間(0,16)上的所有實數(shù)根之和是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}是首項為a1=
1
4
,公比q=
1
4
的等比數(shù)列,設bn+2=3log
1
4
an(n∈N*),數(shù)列{cn}滿足cn=an•bn
(1)求證:{bn}是等差數(shù)列;
(2)求數(shù)列{cn}的前n項和Sn
(3)若cn
1
4
m2+m-1對一切正整數(shù)n恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x-alnx-1(a∈R),g(x)=xeb-x(b∈R),且函數(shù)g(x)的最大值為1.
(1)求b的值;
(2)若函數(shù)f(x)有唯一的零點,且對任意的x1,x2∈[3,4](x1≠x2),|f(x2)-f(x1)|<|
1
g(x2)
-
1
g(x1)
|恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一個球與正六棱柱的各個面相切,則正六棱柱的側面積與底面積的比為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

高三年級有3名男生和1名女生為了報某所大學,事先進行了多方詳細咨詢,并根據(jù)自己的高考成績情況,最終估計這3名男生報此所大學的概率都是
1
2
,這1名女生報此所大學的概率是
1
3
.且這4人報此所大學互不影響.
(Ⅰ)求上述4名學生中報這所大學的人數(shù)中男生和女生人數(shù)相等的概率;
(Ⅱ)在報考某所大學的上述4名學生中,記ξ為報這所大學的男生和女生人數(shù)的和,試求ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=ax-
1
a
(a>0,a≠1)的圖象可能是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于數(shù)列{an},如果對任意正整數(shù)n,總有不等式:
an+an+2
2
≤an+1成立,則稱數(shù)列{an}為向上凸數(shù)列(簡稱上凸數(shù)列).現(xiàn)有數(shù)列{an}滿足如下兩個條件:
(1)數(shù)列{an}為上凸數(shù)列,且a1=1,a10=28;
(2)對正整數(shù)n(1≤n<10,n∈N*),都有|an-bn|≤20,其中b=n2-6n+10.
則數(shù)列{an}中的第五項a5的取值范圍為
 

查看答案和解析>>

同步練習冊答案