已知函數(shù)
(1)討論函數(shù)的奇偶性;
(2)若函數(shù)上為減函數(shù),求的取值范圍.

1)當(dāng)時(shí),是奇函數(shù);當(dāng)時(shí),是偶函數(shù);當(dāng)時(shí),是非奇非偶函數(shù),(2).

解析試題分析:(1)研究函數(shù)奇偶性,首先研究定義域,,在定義域前提下,研究相等或相反關(guān)系. 若,則,,若,,,,(2)利用函數(shù)單調(diào)性定義研究函數(shù)單調(diào)性. 因函數(shù)上為減函數(shù),故對(duì)任意的,都有,即恒成立,恒成立,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/b9/9/q0llh.png" style="vertical-align:middle;" />,所以.
(1)   (1分)
為偶函數(shù),則對(duì)任意的,都有
,對(duì)任意的都成立。由于不恒等于0,故有,即 ∴當(dāng)時(shí),是偶函數(shù)。 (4分)
為奇函數(shù),則對(duì)任意的,都有
,對(duì)任意的都成立。由于不恒等于0,故有,即∴當(dāng)時(shí),是奇函數(shù)。 (6分)
∴當(dāng)時(shí),是奇函數(shù);當(dāng)時(shí),是偶函數(shù);當(dāng)時(shí),是非奇非偶函數(shù)。 (7分)
(2)因函數(shù)上為減函數(shù),故對(duì)任意的,都有,   (2分)
恒成立。 (4分)由,知恒成立,即恒成立。
由于當(dāng)時(shí)   (6分)
   (7分)
考點(diǎn):函數(shù)奇偶性與單調(diào)性

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知為實(shí)數(shù),
(1)若,求 上的最大值和最小值;
(2)若上都是遞增的,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某商場銷售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷售量(單位:千克)與銷售價(jià)格(單位:元/千克)滿足關(guān)系式其中為常數(shù)。己知銷售價(jià)格為5元/千克時(shí),每日可售出該商品11千克.
(1)求的值;
(2)若該商品的成本為3元/千克,試確定銷售價(jià)格的值,使商場每日銷售該商品所獲得的利潤最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=2x,x∈R.當(dāng)m取何值時(shí)方程|f(x)-2|=m有一個(gè)解?兩個(gè)解?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

定義函數(shù)(為定義域)圖像上的點(diǎn)到坐標(biāo)原點(diǎn)的距離為函數(shù)的的模.若模存在最大值,則稱之為函數(shù)的長距;若模存在最小值,則稱之為函數(shù)的短距.
(1)分別判斷函數(shù)是否存在長距與短距,若存在,請(qǐng)求出;
(2)求證:指數(shù)函數(shù)的短距小于1;
(3)對(duì)于任意是否存在實(shí)數(shù),使得函數(shù)的短距不小于2且長距不大于4.若存在,請(qǐng)求出的取值范圍;不存在,則說明理由?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)中,為奇數(shù),均為整數(shù),且均為奇數(shù).求證:無整數(shù)根。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是二次函數(shù),不等式的解集是(0,5),且在區(qū)間[-1,4]上的最大值是12.
(1)求f(x)的解析式;
(2)是否存在正整數(shù)m,使得方程在區(qū)間內(nèi)有且只有兩個(gè)不等的實(shí)數(shù)根?若存在,求出所有m的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

據(jù)環(huán)保部門測定,某處的污染指數(shù)與附近污染源的強(qiáng)度成正比,與到污染源距離的平方成反比,比例常數(shù)為.現(xiàn)已知相距18的A,B兩家化工廠(污染源)的污染強(qiáng)度分別為,它們連線上任意一點(diǎn)C處的污染指數(shù)等于兩化工廠對(duì)該處的污染指數(shù)之和.設(shè)).
(1)試將表示為的函數(shù); (2)若,且時(shí),取得最小值,試求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

定義:對(duì)于函數(shù),若存在非零常數(shù),使函數(shù)對(duì)于定義域內(nèi)的任意實(shí)數(shù),都有,則稱函數(shù)是廣義周期函數(shù),其中稱為函數(shù)的廣義周期,稱為周距.
(1)證明函數(shù)是以2為廣義周期的廣義周期函數(shù),并求出它的相應(yīng)周距的值;
(2)試求一個(gè)函數(shù),使為常數(shù),)為廣義周期函數(shù),并求出它的一個(gè)廣義周期和周距;
(3)設(shè)函數(shù)是周期的周期函數(shù),當(dāng)函數(shù)上的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/4a/9/1ybvn2.png" style="vertical-align:middle;" />時(shí),求上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案