(2012•青島一模)如圖,在正四棱柱ABCD-A1B1C1D1中,AB=a,AA1=
2
a
,E為CC1的中點(diǎn),AC∩BD=O.
(Ⅰ) 證明:OE∥平面ABC1;
(Ⅱ)證明:A1C⊥平面BDE.
分析:(Ⅰ) 證明OE∥AC1,然后利用直線與平面平行的判定定理證明OE∥平面ABC1;
(Ⅱ)連接A1C1,證明A1C⊥AC1,A1C⊥OE,證明BD⊥平面A1C,然后證明A1C⊥平面BDE.
解答:解:(1)證明:因?yàn)镋C1=EC,AO=OC.所以O(shè)E∥AC1
因?yàn)锳C1?平面ABC1,OE?平面ABC1,所以O(shè)E∥平面ABC1;
(Ⅱ)連接A1C1,因?yàn)锳B=a所以A1C1=
2
a.
所以四邊形ACC1A1為正方形,所以A1C⊥AC1,
因?yàn)镺E∥AC1
所以A1C⊥OE,
又因?yàn)锽D⊥AC,BD⊥AA1,AC∩AA1=A
所以BD⊥平面AA1C,所以BD⊥A1C,
又因?yàn)镺E∩BD=O,所以A1C⊥平面BDE.
點(diǎn)評(píng):本題考查直線與平面平行,直線與平面垂直,考查判定定理的應(yīng)用,考查空間想象能力,邏輯推理能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•青島一模)已知a>b,函數(shù)f(x)=(x-a)(x-b)的圖象如圖所示,則函數(shù)g(x)=loga(x+b)的圖象可能為
(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•青島一模)已知等差數(shù)列{an}的公差大于零,且a2,a4是方程x2-18x+65=0的兩個(gè)根;各項(xiàng)均為正數(shù)的等比數(shù)列{bn}的前n項(xiàng)和為Sn,且滿足b3=a3,S3=13.
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)若數(shù)列{cn}滿足cn=
an ,n≤5
b ,n>5
,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•青島一模)已知實(shí)數(shù)集R,集合M={x|0<x<2},集合N={x|y=
1
x-1
}
,則M∩(?RN)( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•青島一模)已知銳角△ABC中內(nèi)角A、B、C的對(duì)邊分別為a、b、c,且a2+b2=c2+ab.
(Ⅰ)求角C的值;
(Ⅱ)設(shè)函數(shù)f(x)=sin(ωx-
π6
)-cosωx(ω>0),且f(x)圖象上相鄰兩最高點(diǎn)間的距離為π,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•青島一模)已知點(diǎn)M在橢圓D:
x2
a2
+
y2
b2
=1(a>b>0)上,以M為圓心的圓與x軸相切于橢圓的右焦點(diǎn),若圓M與y軸相交于A,B兩點(diǎn),且△ABM是邊長(zhǎng)為
2
6
3
的正三角形.
(Ⅰ)求橢圓D的方程;
(Ⅱ)設(shè)P是橢圓D上的一點(diǎn),過(guò)點(diǎn)P的直線l交x軸于點(diǎn)F(-1,0),交y軸于點(diǎn)Q,若
QP
=2
PF
,求直線l的斜率;
(Ⅲ)過(guò)點(diǎn)G(0,-2)作直線GK與橢圓N:
3x2
a2
+
4y2
b2
=1
左半部分交于H,K兩點(diǎn),又過(guò)橢圓N的右焦點(diǎn)F1做平行于HK的直線交橢圓N于R,S兩點(diǎn),試判斷滿足|GH|•|GK|=3|RF1|•|F1S|的直線GK是否存在?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案