【題目】12分)為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗員每天從該生產(chǎn)線上隨機抽取16個零件,并測量其尺寸(單位:cm).根據(jù)長期生產(chǎn)經(jīng)驗,可以認為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布N(μ,σ2)

1)假設(shè)生產(chǎn)狀態(tài)正常,記X表示一天內(nèi)抽取的16個零件中其尺寸在(μ–3σ,μ+3σ)之外的零件數(shù),求P(X1)X的數(shù)學(xué)期望;

2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在(μ–3σ,μ+3σ)之外的零件,就認為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對當(dāng)天的生產(chǎn)過程進行檢查.

)試說明上述監(jiān)控生產(chǎn)過程方法的合理性;

)下面是檢驗員在一天內(nèi)抽取的16個零件的尺寸:

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

經(jīng)計算得,其中xi為抽取的第i個零件的尺寸,i=1,2,,16

用樣本平均數(shù)作為μ的估計值,用樣本標(biāo)準(zhǔn)差s作為σ的估計值,利用估計值判斷是否需對當(dāng)天的生產(chǎn)過程進行檢查?剔除之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計μσ(精確到0.01).

附:若隨機變量Z服從正態(tài)分布N(μ,σ2),則P(μ–3σ<Z<μ+3σ)=0.997 40.997 4160.959 2,

【答案】1的數(shù)學(xué)期望為

(2)詳見解析

【解析】(1)抽取的一個零件的尺寸在之內(nèi)的概率為0.9974,從而零件的尺寸在之外的概率為0.0026,故.因此

.

的數(shù)學(xué)期望為.

(2)(i)如果生產(chǎn)狀態(tài)正常,一個零件尺寸在之外的概率只有0.0026,一天內(nèi)抽取的16個零件中,出現(xiàn)尺寸在之外的零件的概率只有0.0408,發(fā)生的概率很小.因此一旦發(fā)生這種情況,就有理由認為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對當(dāng)天的生產(chǎn)過程進行檢查,可見上述監(jiān)控生產(chǎn)過程的方法是合理的.

(ii)由,得的估計值為,的估計值為,由樣本數(shù)據(jù)可以看出有一個零件的尺寸在之外,因此需對當(dāng)天的生產(chǎn)過程進行檢查.

剔除之外的數(shù)據(jù)9.22,剩下數(shù)據(jù)的平均數(shù)為,因此的估計值為10.02.

,剔除之外的數(shù)據(jù)9.22,剩下數(shù)據(jù)的樣本方差為,

因此的估計值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知θ為向量 的夾角,| |=2,| |=1,關(guān)于x的一元二次方程x2﹣| |x+ =0有實根.
(Ⅰ)求θ的取值范圍;
(Ⅱ)在(Ⅰ)的條件下,求函數(shù)f(θ)=sin(2θ+ )的最值及對應(yīng)的θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中, 平面, , 上的動點, .

(Ⅰ)若點中點,證明:平面平面;

(Ⅱ)判斷點到平面的距離是否為定值?若是,求出定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某鮮花店根據(jù)以往某品種鮮花的銷售記錄,繪制出日銷售量的頻率分布直方圖,如圖所示.將日銷售量落入各組區(qū)間的頻率視為概率,且假設(shè)每天的銷售量相互獨立.

(1)求在未來的連續(xù)4天中,有2天的日銷售量低于100枝且另外2天不低于150枝的概率;

(2)用表示在未來4天里日銷售量不低于100枝的天數(shù),求隨機變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓 和拋物線 , 為坐標(biāo)原點.

(1)已知直線和圓相切,與拋物線交于兩點,且滿足,求直線的方程;

(2)過拋物線上一點作兩直線和圓相切,且分別交拋物線兩點,若直線的斜率為,求點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若一個四棱錐底面為正方形,頂點在底面的射影為正方形的中心,且該四棱錐的體積為9,當(dāng)其外接球表面積最小時,它的高為(
A.3
B.2
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)團委組織了“弘揚奧運精神,愛我中華”的知識競賽,從參加考試的學(xué)生中抽出60名學(xué)生,將其成績(均為整數(shù))分成六段[40,50),[50,60),…,[90,100]后畫出如下部分頻率分布直方圖.觀察圖形給出的信息,回答下列問題:
(1)求第四小組的頻率,并補全這個頻率分布直方圖;
(2)估計這次考試的及格率(60分及以上為及格)和平均分;
(3)從成績是[40,50)和[90,100]的學(xué)生中選兩人,求他們在同一分數(shù)段的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一直線l過直線l1:3x﹣y=3和直線l2:x﹣2y=2的交點P,且與直線l3:x﹣y+1=0垂直.
(1)求直線l的方程;
(2)若直線l與圓心在x正半軸上的半徑為 的圓C相切,求圓C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=ax﹣(k﹣1)ax(a>0且a≠1)是定義域為R的奇函數(shù).
(1)求k值;
(2)若f(1)= ,且g(x)=a2x+a2x﹣2mf(x)在[1,+∞)上的最小值為﹣2,求m的值.

查看答案和解析>>

同步練習(xí)冊答案