A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | 1 | D. | $\sqrt{3}$ |
分析 把已知的等式中的cos2α,利用同角三角函數間的基本關系化簡后,得到關于sinα的方程,根據α的度數,求出方程的解即可得到sinα的值,然后利用特殊角的三角函數值,由α的范圍即可得到α的度數,利用α的度數求出tanα即可.
解答 解:由cos2α=1-2sin2α,得到sin2α+cos2α=1-sin2α=$\frac{1}{4}$,
則sin2α=$\frac{3}{4}$,又α∈(0,$\frac{π}{2}$),
所以sinα=$\frac{\sqrt{3}}{2}$,
則α=$\frac{π}{3}$,
所以tanα=tan$\frac{π}{3}$=$\sqrt{3}$.
故選:D.
點評 此題考查學生靈活運用二倍角的余弦函數公式及同角三角函數間的基本關系化簡求值,學生做題時應注意角度的范圍,屬于基礎題.
科目:高中數學 來源: 題型:選擇題
A. | (2,4) | B. | (2,4] | C. | [2,4] | D. | (-1,4] |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (1,$\sqrt{5}$) | B. | ($\sqrt{5}$,+∞) | C. | (1,$\sqrt{5}$] | D. | [$\sqrt{5}$,+∞) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com