精英家教網 > 高中數學 > 題目詳情
13.若$α∈(0,\frac{π}{2})$,且${sin^2}α+cos2α=\frac{1}{4}$,則tanα的值等于(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{3}}{3}$C.1D.$\sqrt{3}$

分析 把已知的等式中的cos2α,利用同角三角函數間的基本關系化簡后,得到關于sinα的方程,根據α的度數,求出方程的解即可得到sinα的值,然后利用特殊角的三角函數值,由α的范圍即可得到α的度數,利用α的度數求出tanα即可.

解答 解:由cos2α=1-2sin2α,得到sin2α+cos2α=1-sin2α=$\frac{1}{4}$,
則sin2α=$\frac{3}{4}$,又α∈(0,$\frac{π}{2}$),
所以sinα=$\frac{\sqrt{3}}{2}$,
則α=$\frac{π}{3}$,
所以tanα=tan$\frac{π}{3}$=$\sqrt{3}$.
故選:D.

點評 此題考查學生靈活運用二倍角的余弦函數公式及同角三角函數間的基本關系化簡求值,學生做題時應注意角度的范圍,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

3.設集合M={x|x2-3x-4≤0},N={x||x-3|<1},則M∩N=( 。
A.(2,4)B.(2,4]C.[2,4]D.(-1,4]

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

4.在下列各函數中,偶函數是( 。
A.y=x3B.y=x4C.y=$\sqrt{x}$D.y=$\frac{1}{x}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

1.如圖,在三棱柱ABC-A1B1C1中,側棱垂直于底面,AB=AC,E,F,H分別是A1C1,BC,AC的中點.
(1)求證:平面C1HF∥平面ABE.
(2)求證:平面AEF⊥平面B1BCC1

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

8.若直線y=2x與雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)有公共點,則雙曲線的離心率的取值范圍為( 。
A.(1,$\sqrt{5}$)B.($\sqrt{5}$,+∞)C.(1,$\sqrt{5}$]D.[$\sqrt{5}$,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

18.曲線y=xex+2x-1在點(0,-1)處的切線方程為y=3x-1.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

5.設常數a∈R,函數f(x)=|x-1|+|x2-a|,若f(2)=1,則a=4.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.如圖,在三棱椎P-ABC中,D,E,F分別是棱PC、AC、AB的中點,且PA⊥面ABC.
(1)求證:PA∥面DEF;
(2)求證:面BDE⊥面ABC.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.已知函數f(x)=x2+$\frac{a}{x}$(x≠0,a∈R)
(1)當a=0時,判斷函數f(x)的奇偶性;
(2)若f(x)在區(qū)間[2,+∞)上是增函數,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案