寫出解方程ax2+bx+c=0(a,b,c為實(shí)常數(shù)且a≠0)的一個(gè)算法.

思路分析:本題要分Δ>0,Δ=0,Δ<0三種情況討論.

解:算法如下:

第一步,計(jì)算Δ=b2-4ac;

第二步,判斷方程有無實(shí)數(shù)解.

若Δ>0,方程有兩個(gè)實(shí)數(shù)解x1=,x2=;

若Δ=0,方程有兩個(gè)相等的實(shí)數(shù)解,x1=x2=;

若Δ<0,方程沒有實(shí)數(shù)解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)設(shè)
a
,
b
c
是平面內(nèi)互不平行的三個(gè)向量,x∈R,有下列命題:
①方程
a
x2+
b
x+
c
=
0
(
a
0
)
不可能有兩個(gè)不同的實(shí)數(shù)解;
②方程
a
x2+
b
x+
c
=
0
(
a
0
)
有實(shí)數(shù)解的充要條件是
b
2
-4
a
c
≥0

③方程
a
2
x2+2
a
b
x+
b
2
=0
有唯一的實(shí)數(shù)解x=-
b
a
;
④方程
a
2
x2+2
a
b
x+
b
2
=0
沒有實(shí)數(shù)解.
其中真命題有
①④
①④
.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:山東省勝利一中2006—2007學(xué)年度第一學(xué)期高三月考數(shù)學(xué)(理) 題型:044

解答題:解答應(yīng)寫出文字說明、證明過程或演算步驟.

已知二次函數(shù)f(x)=ax2+bx(a,b為常數(shù)且a≠0)滿足條件f(x-3)=f(5-x),且方程f(x)=x有等根

(1)

求的解析式

(2)

是否存在實(shí)數(shù)m,n(m<n)使f(x)的定義域和值域分別為[m,n]和[3m,3n],如果存在,求出m,n的值;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:陜西部分學(xué)校2008年5月高三聯(lián)合測試、文科數(shù)學(xué)測題 題型:044

解答題(解答寫出文字說明,證明過程)

拋物線C的方程為y=ax2(a<0),過拋物線C上一點(diǎn)P(x0,y0)(x0≠0)作斜率為k1,k2的兩條直線交拋物線于A(x1,y1),B(x2,y2)兩點(diǎn),(P、A、B三點(diǎn)互不相同),且滿足k2+λk1=0(x0≠0,且λ≠-1).

(1)設(shè)直線AB上一點(diǎn)M,滿足證明線段PM的中點(diǎn)在y軸上.

(2)當(dāng)λ=1時(shí),若點(diǎn)p的坐標(biāo)為(1,-1),求∠PAB為鈍角時(shí),A的縱坐標(biāo)y1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:填空題

設(shè)
a
,
b
c
是平面內(nèi)互不平行的三個(gè)向量,x∈R,有下列命題:
①方程
a
x2+
b
x+
c
=
0
(
a
0
)
不可能有兩個(gè)不同的實(shí)數(shù)解;
②方程
a
x2+
b
x+
c
=
0
(
a
0
)
有實(shí)數(shù)解的充要條件是
b
2
-4
a
c
≥0
;
③方程
a
2
x2+2
a
b
x+
b
2
=0
有唯一的實(shí)數(shù)解x=-
b
a

④方程
a
2
x2+2
a
b
x+
b
2
=0
沒有實(shí)數(shù)解.
其中真命題有______.(寫出所有真命題的序號)

查看答案和解析>>

同步練習(xí)冊答案