20.已知集合P={x|1≤x≤3},Q={x|x2≥4},則P∩(∁RQ)=( 。
A.[2,3]B.(-2,3]C.[1,2)D.(-∞,-2]∪[1,+∞)

分析 化簡集合Q,根據(jù)交集和補(bǔ)集的定義寫出運算結(jié)果即可.

解答 解:集合P={x∈|1≤x≤3},Q={x|x2≥4}={x|x≤-2或x≥2},
則∁RQ={x|-2<x<2},
∴P∩(∁RQ)={x|1≤x<2}=[1,2).
故選:C.

點評 本題考查了集合的化簡與運算問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{x^2}{{1+{x^2}}}$.
(Ⅰ)分別求$f(2)+f(\frac{1}{2})$,$f(3)+f(\frac{1}{3})$,$f(4)+f(\frac{1}{4})$的值;
(Ⅱ)歸納猜想一般性結(jié)論,并給出證明;
(Ⅲ)求值:$f(1)+f(2)+…+f(2011)+f(\frac{1}{2011})+f(\frac{1}{2010})+…+f(\frac{1}{2})+f(1)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若tanα=3tanβ,其中0<β≤α<$\frac{π}{2}$,則α-β的最大值為$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在平行四邊形ABCD中,AB=1,BC=2,∠ABC=60°,在直角梯形ABEF中,BE=2,AF=3,BE∥AF,∠BAF=90°,平面ABCD⊥平面ABEF.
(Ⅰ)求證:AC⊥平面ABEF;
(Ⅱ)求證:CD∥平面AEF;
(Ⅲ)求三棱錐D-AEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.產(chǎn)品中有正品4件,次品3件,從中任取2件:
①恰有一件次品和恰有2件次品;
②至少有1件次品和全都是次品;
③至少有1件正品和至少有一件次品;
④至少有一件次品和全是正品.
上述四組事件中,互為互斥事件的組數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{m}{x}$+xlnx(m>0),g(x)=lnx-2.
(1)當(dāng)m=1時,求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)若對任意的x1∈[1,e],總存在x2∈[1,e],使$\frac{f({x}_{1})}{{x}_{1}}$•$\frac{g({x}_{2})}{{x}_{2}}$=-1,其中e是自然對數(shù)的底數(shù).求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.給定橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),稱圓C1:x2+y2=a2+b2為橢圓的“伴隨圓”.已知A(2,1)是橢圓G:x2+4y2=m(m>0)上的點.
(Ⅰ)若過點P(0,$\sqrt{10}$)的直線l與橢圓G有且只有一個公共點,求直線l被橢圓G的“伴隨圓”G1所截得的弦長;
(Ⅱ)若橢圓G上的M,N兩點滿足4k1k2=-1(k1,k2是直線AM,AN的斜率),求證:M,N,O三點共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知i是虛數(shù)單位,若復(fù)數(shù)z滿足zi=1+i,則z2=( 。
A.-2iB.2iC.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x∈(-∞,0)時,f(x)=2x3+x2,則f(2)=12.

查看答案和解析>>

同步練習(xí)冊答案