由點(diǎn)P(-1,4)向圓引的切線(xiàn)長(zhǎng)是        (    )

    A.3    B.  C. D.5

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)點(diǎn)P是圓x2+y2=4上任意一點(diǎn),由點(diǎn)P向x軸作垂線(xiàn)PP0,垂足為Po,且
MP0
=
3
2
pp0

(Ⅰ)求點(diǎn)M的軌跡C的方程;
(Ⅱ)設(shè)直線(xiàn)l:y=kx+m(m≠0)與(Ⅰ)中的軌跡C交于不同的兩點(diǎn)A,B.
(1)若直線(xiàn)OA,AB,OB的斜率成等比數(shù)列,求實(shí)數(shù)m的取值范圍;
(2)若以AB為直徑的圓過(guò)曲線(xiàn)C與x軸正半軸的交點(diǎn)Q,求證:直線(xiàn)l過(guò)定點(diǎn)(Q點(diǎn)除外),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,拋物線(xiàn)y=4-x2與直線(xiàn)y=3x的兩交點(diǎn)為A、B,點(diǎn)P在拋物線(xiàn)上從A向B運(yùn)動(dòng).

(1)求使△PAB的面積最大的P點(diǎn)的坐標(biāo)(a,b);

(2)證明由拋物線(xiàn)與線(xiàn)段AB圍成的圖形,被直線(xiàn)x=a分為面積相等的兩部分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線(xiàn)有光學(xué)性質(zhì): 由其焦點(diǎn)射出的光線(xiàn)經(jīng)拋物線(xiàn)折射后,沿平行于拋物線(xiàn)對(duì)稱(chēng)軸的方向射出,今有拋物線(xiàn)y2=2px(p>0)  一光源在點(diǎn)M(,4)處,由其發(fā)出的光線(xiàn)沿平行于拋物線(xiàn)的軸的方向射向拋物線(xiàn)上的點(diǎn)P,折射后又射向拋物線(xiàn)上的點(diǎn)Q,再折射后,又沿平行于拋物線(xiàn)的軸的方向射出,途中遇到直線(xiàn)l: 2x-4y-17=0上的點(diǎn)N,再折射后又射回點(diǎn)M(如下圖所示)

 (1)設(shè)P、Q兩點(diǎn)坐標(biāo)分別為(x1,y1)、(x2,y2),證明:y1·y2=-p2;

(2)求拋物線(xiàn)的方程;

(3)試判斷在拋物線(xiàn)上是否存在一點(diǎn),使該點(diǎn)與點(diǎn)M關(guān)于PN所在的直線(xiàn)對(duì)稱(chēng)?若存在,請(qǐng)求出此點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖北省武漢市武昌區(qū)高三上學(xué)期期末調(diào)研測(cè)試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本題滿(mǎn)分13分)

設(shè)點(diǎn)P是圓x2 +y2 =4上任意一點(diǎn),由點(diǎn)P向x軸作垂線(xiàn)PP0,垂足為Po,且

(Ⅰ)求點(diǎn)M的軌跡C的方程;

(Ⅱ)設(shè)直線(xiàn):y=kx+m(m≠0)與(Ⅰ)中的軌跡C交于不同的兩點(diǎn)A,B.

(1)若直線(xiàn)OA,AB,OB的斜率成等比數(shù)列,求實(shí)數(shù)m的取值范圍;

(2)若以AB為直徑的圓過(guò)曲線(xiàn)C與x軸正半軸的交點(diǎn)Q,求證:直線(xiàn)過(guò)定點(diǎn)(Q點(diǎn)除外),并求出該定點(diǎn)的坐標(biāo).

 

查看答案和解析>>

同步練習(xí)冊(cè)答案