(本題滿分12分)如圖,四棱錐P—ABCD的底面是矩形,PA⊥面ABCD,PA=2,AB=8,BC=6,點E是PC的中點,F(xiàn)在AD上且AF:FD=1:2.建立適當坐標系.

(1)求EF的長;
(2)證明:EF⊥PC.

(1)6 (2)見解析

解析試題分析:(1)以A為原點,,分別為x,y,z軸建立直角坐標系,…………2分
由條件知:AF=2,…………3分
∴F(0,2,0),P(0,0,2),C(8,6,0).…4分
從而E(4,3,),∴EF==6.…………6分
(2)證明:=(-4,-1,-),=(8,6,-2),…………8分
=-4×8+(-1)×6+(-)×(-2)=0,…………10分
∴EF⊥PC.…………12分
考點:利用空間向量求距離證明垂直關系
點評:向量法求解立體題目比幾何法思路簡單明了

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,PA垂直于矩形ABCD所在的平面,,E、F分別是AB、PD的中點.

(Ⅰ)求證:平面PCE 平面PCD;
(Ⅱ)求三棱錐P-EFC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(14分)如右圖,簡單組合體ABCDPE,其底面ABCD為邊長為的正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC=.

(1)若N為線段PB的中點,求證:EN//平面ABCD;
(2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
如圖,平行四邊形中,,沿折起到的位置,使平面平面

(I)求證:;     
(Ⅱ)求三棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分) 如圖,平面⊥平面,其中為矩形,為梯形,,=2=2,中點.
(Ⅰ) 證明;
(Ⅱ) 若二面角的平面角的余弦值為,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)
如圖,在四棱錐中,底面為平行四邊形,平面,在棱上.

(I)當時,求證平面
(II)當二面角的大小為時,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分10分)已知:四邊形ABCD是空間四邊形,E, H分別是邊AB,AD的中點,F(xiàn), G分別是邊CB,CD上的點,且
求證:(1)四邊形EFGH是梯形;
(2)FE和GH的交點在直線AC上 .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分13分)
如圖,棱錐P—ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=.

(1)求證:BD⊥平面PAC;
(2)求二面角P—CD—B余弦值的大小
(3)求點C到平面PBD的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(ii)當滿足條件           ___________時,有.(填所選條件的序號)

查看答案和解析>>

同步練習冊答案