某興趣小組測(cè)量電視塔AE的高度H(單位:m),如示意圖,垂直放置的標(biāo)桿BC的高度h=4m,仰角∠ABE=,∠ADE=。

(1) 該小組已經(jīng)測(cè)得一組的值,tan=1.24,tan=1.20,請(qǐng)據(jù)此算出H的值;

(2) 該小組分析若干測(cè)得的數(shù)據(jù)后,認(rèn)為適當(dāng)調(diào)整標(biāo)桿到電視塔的距離d(單位:m),使之差較大,可以提高測(cè)量精確度。若電視塔的實(shí)際高度為125m,試問(wèn)d為多少時(shí),最大?

 

【答案】

(1)124m。(2)m。

【解析】

試題分析:(1)過(guò)與點(diǎn),則

所以,電視塔的高度H是124m。

(2)由題設(shè)知,

當(dāng)且僅當(dāng)時(shí),取等號(hào),   故當(dāng)時(shí),最大。

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013031412263061709083/SYS201303141227198670506350_DA.files/image013.png">,則,所以當(dāng)時(shí),-最大。

故所求的m。

考點(diǎn):解三角形的實(shí)際應(yīng)用;和差公式;基本不等式。

點(diǎn)評(píng):在解應(yīng)用題時(shí),我們要分析題意,分清已知與所求,再根據(jù)題意正確畫(huà)出示意圖,通過(guò)這一步可將實(shí)際問(wèn)題轉(zhuǎn)化為可用數(shù)學(xué)方法解決的問(wèn)題。解題中,要注意正、余弦定理的靈活應(yīng)用及公式的熟練應(yīng)用。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)某興趣小組測(cè)量電視塔AE的高度H(單位:m),如示意圖,垂直放置的標(biāo)桿BC的高度h=4m,仰角∠ABE=α,∠ADE=β.
(1)該小組已經(jīng)測(cè)得一組α、β的值,tanα=1.24,tanβ=1.20,請(qǐng)據(jù)此算出H的值;
(2)該小組分析若干測(cè)得的數(shù)據(jù)后,認(rèn)為適當(dāng)調(diào)整標(biāo)桿到電視塔的距離d(單位:m),使α與β之差較大,可以提高測(cè)量精確度.若電視塔的實(shí)際高度為125m,試問(wèn)d為多少時(shí),α-β最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某興趣小組測(cè)量電視塔AE的高度H(單位:m),如圖所示,垂直放置的標(biāo)桿BC的高度h=4m,仰角∠ABE=α,∠ADE=β,該小組已經(jīng)測(cè)得一組,α,β的值,tanα=1.24,tanβ=1.20,據(jù)此算出H=
124
124
m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年高考試題分項(xiàng)版理科數(shù)學(xué)之專題四三角函數(shù) 題型:解答題

(14分)某興趣小組測(cè)量電視塔AE的高度H(單位m),如示意圖,垂直放置的標(biāo)桿BC高度h=4m,仰角∠ABE=α,∠ADE=β

(1)該小組已經(jīng)測(cè)得一組α、β的值,tanα=1.24,tanβ=1.20,,請(qǐng)據(jù)此算出H的值

(2)該小組分析若干測(cè)得的數(shù)據(jù)后,發(fā)現(xiàn)適當(dāng)調(diào)整標(biāo)桿到電視塔的距離d(單位m),使α與β之差較大,可以提高測(cè)量精確度,若電視塔實(shí)際高度為125m,問(wèn)d為多少時(shí),α-β最大

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年高考試題分項(xiàng)版理科數(shù)學(xué)之專題十五推理與證明 題型:解答題

(14分)某興趣小組測(cè)量電視塔AE的高度H(單位m),如示意圖,垂直放置的標(biāo)桿BC高度h=4m,仰角∠ABE=α,∠ADE=β

(1)該小組已經(jīng)測(cè)得一組α、β的值,tanα=1.24,tanβ=1.20,,請(qǐng)據(jù)此算出H的值

(2)該小組分析若干測(cè)得的數(shù)據(jù)后,發(fā)現(xiàn)適當(dāng)調(diào)整標(biāo)桿到電視塔的距離d(單位m),使α與β之差較大,可以提高測(cè)量精確度,若電視塔實(shí)際高度為125m,問(wèn)d為多少時(shí),α-β最大

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年高考試題分項(xiàng)版理科數(shù)學(xué)之專題七直線與圓的方程 題型:解答題

(14分)某興趣小組測(cè)量電視塔AE的高度H(單位m),如示意圖,垂直放置的標(biāo)桿BC高度h=4m,仰角∠ABE=α,∠ADE=β

(1)該小組已經(jīng)測(cè)得一組α、β的值,tanα=1.24,tanβ=1.20,,請(qǐng)據(jù)此算出H的值

(2)該小組分析若干測(cè)得的數(shù)據(jù)后,發(fā)現(xiàn)適當(dāng)調(diào)整標(biāo)桿到電視塔的距離d(單位m),使α與β之差較大,可以提高測(cè)量精確度,若電視塔實(shí)際高度為125m,問(wèn)d為多少時(shí),α-β最大

 

查看答案和解析>>

同步練習(xí)冊(cè)答案