【題目】已知函數(shù)f(x)=ax2+(x﹣1)ex
(1)當(dāng)a=﹣ 時(shí),求f(x)在點(diǎn)P(1,f(1))處的切線(xiàn)方程;
(2)討論f(x)的單調(diào)性;
(3)當(dāng)﹣ <a<﹣ 時(shí),f(x)是否存在極值?若存在,求所有極值的和的取值范圍.

【答案】
(1)解:當(dāng)a= 時(shí),f(x)= x2+(x﹣1)ex,

∴f(1)=

f′(x)=﹣(e+1)x+xex,∴f′(1)=﹣1

切線(xiàn)方程為:y+ =﹣(x﹣1),

即:2x+2y+e﹣1=0


(2)解:f′(x)=2ax+xex=x(ex+2a)

①當(dāng)2a≥0即a≥0時(shí),f(x)在(﹣∞,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增;

②當(dāng)﹣ <a<0時(shí),f(x)在(﹣∞,ln(﹣2a))上單調(diào)遞增,

在(ln(﹣2a),0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增;

③當(dāng)a=﹣ 時(shí),f(x)在(﹣∞,+∞)上單調(diào)遞增;

④當(dāng)a<﹣ 時(shí),f(x)在(﹣∞,0))上單調(diào)遞增,

在(0,ln(﹣2a))上單調(diào)遞減,在(ln(﹣2a),+∞)上單調(diào)遞增


(3)解:由(2)知,當(dāng)﹣ <a<﹣ <0時(shí),

f(x)在(﹣∞,ln(﹣2a))上單調(diào)遞增,在(ln(﹣2a),0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增,

∴x1=ln(﹣2a)為極大值點(diǎn),x2=0為極小值點(diǎn),所有極值的和即為f(x1)+f(x2),

f(x1)+f(x2)=ax12+(x1﹣1) ﹣1

∵x1=ln(﹣2a),∴a=﹣ ,

∴f(x1)+f(x2)=﹣ x12+(x1﹣1) ﹣1= (﹣ x12+x1﹣1)﹣1

∵﹣ <a<﹣ ,∴ <﹣2a<1,∴﹣1<x1=ln(﹣2a)<0,

(x)=ex (﹣ x2+x﹣1)﹣1(﹣1<x<0)

′(x)=ex (﹣ x2)<0∴(x)在(﹣1,0)單調(diào)遞減

(0)<(x)<(﹣1)

即﹣2<(x)<﹣ ﹣1

∴所有極值的和的取值范圍為(﹣2,﹣


【解析】(1)當(dāng)a= 時(shí),求出f′(x)=﹣(e+1)x+xex , 利用導(dǎo)數(shù)的幾何意義能出f(x)在點(diǎn)P(1,f(1))處的切線(xiàn)方程.(2)f′(x)=2ax+xex=x(ex+2a),由此根據(jù)a≥0,﹣ <a<0,a=﹣ ,a<﹣ ,利用導(dǎo)數(shù)性質(zhì)能討論f(x)的單調(diào)性.(3)推導(dǎo)出x1=ln(﹣2a)為極大值點(diǎn),x2=0為極小值點(diǎn),所有極值的和即為f(x1)+f(x2),f(x1)+f(x2)=ax12+(x1﹣1) ﹣1,由此利用導(dǎo)性質(zhì)能求出所有極值的和的取值范圍.
【考點(diǎn)精析】利用函數(shù)的極值與導(dǎo)數(shù)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且對(duì)任意正整數(shù)n,都有3an=2Sn+3成立.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log3an , 求數(shù)列{ }的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直三棱柱ABC﹣A1B1C1中,∠ABC=90°,E、F分別為A1C1、B1C1的中點(diǎn),D為棱CC1上任一點(diǎn).

(Ⅰ)求證:直線(xiàn)EF∥平面ABD;
(Ⅱ)求證:平面ABD⊥平面BCC1B1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)6cos2sinωx3(ω>0)在一個(gè)周期內(nèi)的圖象如圖所示,A為圖象的最高點(diǎn),B、C為圖象與x軸的交點(diǎn),且△ABC為正三角形.

(1)ω的值及函數(shù)f(x)的值域;

(2)f(x0),且x0∈(,),求f(x01)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a,b,c分別為△ABC中角A,B,C的對(duì)邊,函數(shù) 且f(A)=5.
(1)求角A的大小;
(2)若a=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|x﹣1|﹣|2x+1|的最大值為m
(1)作函數(shù)f(x)的圖象
(2)若a2+b2+2c2=m,求ab+2bc的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,角、的對(duì)邊分別為、、向量,

,且.

1)求銳角B的大;

2)在(1)的條件下,如果b=2,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax2+(x﹣1)ex
(1)當(dāng)a=﹣ 時(shí),求f(x)在點(diǎn)P(1,f(1))處的切線(xiàn)方程;
(2)討論f(x)的單調(diào)性;
(3)當(dāng)﹣ <a<﹣ 時(shí),f(x)是否存在極值?若存在,求所有極值的和的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x3+ax2+bx在x=﹣ 與x=1處都取得極值.
(1)求a,b的值;
(2)求曲線(xiàn)y=f(x)在x=2處的切線(xiàn)方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案