已知(x2+1)(x-1)9=a0+a1x+a2x2+…+a11x11
(1)求a2的值;
(2)求展開式中系數(shù)最大的項;
(3)求(a1+3a3+…+11a11)2-(2a2+4a4+…+10a10)2的值.
(1)∵(x2+1)(x-1)9=(x2+1)(
C09
x9-
C19
x8+…+
C89
x-
C99
)=a0+a1x+a2x2+…+a11x11,
∴a2=-
C99
-
C79
=-37.                  …(4分)
(2)展開式中的系數(shù)中,數(shù)值為正數(shù)的系數(shù)為a1=
C89
=9,a3=
C69
+
C89
=93,a5=
C49
+
C69
=210,a7=
C29
+
C49
=162,
a9=
C09
+
C29
=37,a11=
C09
,故展開式中系數(shù)最大的項為210x5.                         …(8分)
(3)對=(x2+1)•(x-1)9=a0+a1x+a2x2+…+a11x11兩邊同時求導(dǎo)得:
(11x2-2x+9)(x-1)8=a1+2a2x+3a3x2+…+11a11x10,
令x=1,得a1+2a2+3a3+4a4+…+10a10+11a11=0,
所以(a1+3a3+…+11a11)2-(2a2+4a4+…+10a10)2
=(a1+2a2+3a3+4a4+…+10a10+11a11)(a1-2a2+3a3-4a4+…-10a10+11a11
=0.…(14分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知(1+x+x2)(x+
1x3
n(n∈N+)的展開式中沒有常數(shù)項,且2≤n≤8,則n=
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x2∈{1,0,x},則實數(shù)x的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(x2+1)(x-1)9=a0+a1x+a2x2+…+a11x11
(1)求a2的值;
(2)求展開式中系數(shù)最大的項;
(3)求(a1+3a3+…+11a11)2-(2a2+4a4+…+10a10)2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(1-x+x25=a10x10+a9x9+…+a1x+a0,則(a1+a3+a5+a7+a92-(a0+a2+a4+a6+a8+a102=
-243
-243

查看答案和解析>>

同步練習(xí)冊答案