設(shè)命題p:函數(shù)y=lg(x2+2x-c)的定義域為R,命題q:函數(shù)y=lg(x2+2x-c)的值域為R,若命題p、q有且僅有一個正確,則c的取值范圍為


  1. A.
    (1,+∞)
  2. B.
    (-∞,-1)
  3. C.
    [-1,+∞)
  4. D.
    R
B
分析:先求出命題p和命題q,然后根據(jù)命題p、q的取值范圍和命題p、q有且僅有一個正確,來確定c的取值范圍.
解答:∵命題p:函數(shù)y=lg(x2+2x-c)的定義域為R,
∴x2+2x-c>0的解題為R,
∴△=4+4c<0,∴c<-1.即命題p:c<-1.
∵函數(shù)y=lg(x2+2x-c)的值域為R,
∴x2+2x-c能取到所有大于零的值
這就要求拋物線t=x2+2x-c的值域包括t>0這一范圍
由于其開口向上,只需判別式大于等于零
所以4-4c≥0,∴c≤1.即命題q:c≤1.
∵命題p、q有且僅有一個正確,
∴c的取值范圍為c<-1.
故選B.
點評:本題考查命題的真假判斷和應(yīng)用,解題時要認(rèn)真審題,注意公式的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x,x∈P
-x,x∈M
其中集合P,M是非空數(shù)集.設(shè).f(P)={y|y=f(x),x∈P},f(M)={y|y=f(x),x∈M}
(I)若 P=[l,3],M=(-∞,-2],求f(P)∪f(M);
(II)若P∩M=φ,a函數(shù)f(x)是定義在R上的單調(diào)遞增函數(shù),求集合P,M
(III)判斷命題“若P∪M≠R,則.f(P)∪f(M)≠R”的真假,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)有下面四個命題:
①曲線y=-x2+2x+4在點(1,5)處的切線的傾斜角為45°;
②已知直線l,m,平面α,β,若l⊥α,m?β,l⊥m,則α∥β;
③設(shè)函數(shù)f(x)=Asin(ωx+φ),(A>0,ω>0),若f(1)=0,
則f(x+1)一定是奇函數(shù);
④如果點P到點A(
1
2
,0),B(
1
2
,2)
及直線x=-
1
2
的距離相等,那么滿足條件的點P有且只有1個.
其中正確命題的序號是
 
.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

現(xiàn)有下面四個命題:
①曲線y=-x2+2x+4在點(1,5)處的切線的傾斜角為45°;
②已知直線l,m,平面α,β,若l⊥α,m?β,l⊥m,則α∥β;
③設(shè)函數(shù)f(x)=Asin(ωx+φ),(A>0,ω>0),若f(1)=0,
則f(x+1)一定是奇函數(shù);
④如果點P到點數(shù)學(xué)公式及直線數(shù)學(xué)公式的距離相等,那么滿足條件的點P有且只有1個.
其中正確命題的序號是________.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=
x,x∈P
-x,x∈M
其中集合P,M是非空數(shù)集.設(shè).f(P)={y|y=f(x),x∈P},f(M)={y|y=f(x),x∈M}
(I)若 P=[l,3],M=(-∞,-2],求f(P)∪f(M);
(II)若P∩M=φ,a函數(shù)f(x)是定義在R上的單調(diào)遞增函數(shù),求集合P,M
(III)判斷命題“若P∪M≠R,則.f(P)∪f(M)≠R”的真假,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案