1.函數(shù)y=$\sqrt{3-x}$+log2(x+1)的定義域?yàn)椋ā 。?table class="qanwser">A.[-1,3)B.(-1,3)C.[-1,3]D.(-1,3]

分析 由根式內(nèi)部的代數(shù)式大于等于0,對(duì)數(shù)式的真數(shù)大于0聯(lián)立不等式組求解.

解答 解:要使原函數(shù)有意義,則$\left\{\begin{array}{l}{3-x≥0}\\{x+1>0}\end{array}\right.$,解得-1<x≤3.
∴函數(shù)y=$\sqrt{3-x}$+log2(x+1)的定義域?yàn)椋?1,3].
故選:D.

點(diǎn)評(píng) 本題考查函數(shù)的定義域及其求法,考查不等式組的解法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知向量$\overrightarrow{a}$=(2,-1),$\overrightarrow$=(sinωx,0)(ω>0),且函數(shù)f(x)=$\overrightarrow{a}$$•\overrightarrow$在[-$\frac{π}{6}$,0]上的最小值為$-\sqrt{3}$,將函數(shù)f(x)的圖象上所有的點(diǎn)向右平移φ(0<φ<$\frac{π}{2}$)個(gè)單位后,得到的函數(shù)g(x)的圖象,且已知函數(shù)g(x)的圖形關(guān)于直線x=$\frac{7π}{12}$對(duì)稱.
(1)求函數(shù)g(x)的解析式;
(2)在△ABC中,a,b,c分別為∠A,∠B,∠C對(duì)應(yīng)的邊,若函數(shù)g(A)=0,a=5,求△ABC的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知a>0,則“關(guān)于x的方程ax=b解集為{x0}”的充要條件的序號(hào)是③.
①存在x∈R,$\frac{1}{2}$ax2-bx≥$\frac{1}{2}$ax02-bx0
②存在x∈R,$\frac{1}{2}$ax2-bx≤$\frac{1}{2}$ax02-bx0
③任意x∈R,$\frac{1}{2}$ax2-bx≥$\frac{1}{2}$ax02-bx0
④任意x∈R,$\frac{1}{2}$ax2-bx≤$\frac{1}{2}$ax02-bx0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{1}{2}$kx2-2x+klnx(k∈R).
(1)當(dāng)k=$\frac{1}{2}$時(shí),求函數(shù)f(x)在[$\frac{1}{2}$,4]上的最大值;
(2)若函數(shù)f(x)在區(qū)間($\frac{1}{2}$,4)上不單調(diào),求k的取值范圍;
(3)當(dāng)k=2時(shí),設(shè)[a,b]⊆[1,2],其中a<b,試證明:函數(shù)φ(x)=f′(x)-$\frac{f(b)-f(a)}{b-a}$在區(qū)間(a,b)上有唯一的零點(diǎn).(參考公式:若h(x)=f(g(x)),則h′(x)=f′(g(x))•g′(x))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在長(zhǎng)方體ABCD-A1B1C1D1中,已知二面角A1-BD-A的大小為$\frac{π}{6}$,若空間一條直線l與直線CC1所成的角為$\frac{π}{4}$
,則直線l與平面A1BD所成的角的取值范圍是( 。
A.$[\frac{π}{12},\frac{5π}{12}]$B.$[\frac{π}{4},\frac{5π}{12}]$C.$[\frac{π}{12},\frac{π}{2})$D.$[\frac{π}{6},\frac{π}{4}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),點(diǎn)M,N,F(xiàn)分別為橢圓C的左頂點(diǎn)、上頂點(diǎn)、左焦點(diǎn),若∠MFN=∠NMF+90°,則橢圓C的離心率是( 。
A.$\frac{\sqrt{5}-1}{2}$B.$\frac{\sqrt{3}-1}{2}$C.$\frac{\sqrt{2}-1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.一個(gè)底面直徑和高都是4的圓柱的側(cè)面積為16π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知集合A={x|a-1<x<2a+1},B={x|x2-5x<0},若a=-2,A∩B=∅;若A⊆B,則實(shí)數(shù)a的取值范圍為1≤a≤3或a≤-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖1,在梯形ABCD中,AD∥BC,四邊形ABEF是矩形,將矩形ABEF沿AB折起到四邊形ABE1F1的位置,使得平面ABE1F1⊥平面ABCD,M為AF1上一點(diǎn),如圖2.

(I)求證:BE1⊥DC;
(II)求證:DM∥平面BCE1

查看答案和解析>>

同步練習(xí)冊(cè)答案