【題目】已知函數(shù)
(1)討論的零點(diǎn)個(gè)數(shù);
(2)當(dāng)時(shí),求證恒成立.
【答案】(1) 或時(shí),有1個(gè)零點(diǎn); 時(shí),有2個(gè)零點(diǎn);; 時(shí),有0個(gè)零點(diǎn).
(2)見解析.
【解析】試題分析:(1)求出k=,令g(x)=,根據(jù)函數(shù)的單調(diào)性求出g(x)的最大值,通過討論k的范圍,判斷函數(shù)的零點(diǎn)個(gè)數(shù)即可;
(2)問題轉(zhuǎn)化為e1﹣x+2f(x)﹣2﹣x=2lnx﹣x+e1﹣x≤0,令g(x)=2lnx﹣x+e1﹣x,令h(x)=2﹣x﹣xe1﹣x,根據(jù)函數(shù)的單調(diào)性證明即可;
(1)由已知∵,∴
令
單調(diào)遞增, 單調(diào)遞減
∴
綜上, 或時(shí),有1個(gè)零點(diǎn); 時(shí),有2個(gè)零點(diǎn);; 時(shí),有0個(gè)零點(diǎn).
(2)證明:要證,即證
令
令
,
令,
即,∴單調(diào)遞減.
單調(diào)遞增,
單調(diào)遞減, ,綜上:
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電影院共有1000個(gè)座位,票價(jià)不分等次,根據(jù)電影院的經(jīng)營經(jīng)驗(yàn),當(dāng)每張票價(jià)不超過10元時(shí),票可全部售出;當(dāng)票價(jià)高于10元時(shí),每提高1元,將有30張票不能售出.為了獲得更好的收益,需要給電影院一個(gè)合適的票價(jià),基本條件是:①為了方便找零和算賬,票價(jià)定為1元的整數(shù)倍;②電影院放映一場電影的成本是5750元,票房收入必須高于成本.用x(元)表示每張票價(jià),用y(元)表示該電影放映一場的純收入(除去成本后的收入). (Ⅰ)求函數(shù)y=f(x)的解析式;
(Ⅱ)票價(jià)定為多少時(shí),電影放映一場的純收入最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,以軸正半軸為始邊的銳角和鈍角的終邊分別與單位圓交于點(diǎn),若點(diǎn)的橫坐標(biāo)是,點(diǎn)的縱坐標(biāo)是.
(1)求的值;
(2)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】同時(shí)滿足兩個(gè)條件:(1)定義域內(nèi)是減函數(shù);(2)定義域內(nèi)是奇函數(shù)的函數(shù)是( )
A.f(x)=﹣x|x|
B.
C.f(x)=tanx
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(I)如果在處取得極值,求的值.
(II)求函數(shù)的單調(diào)區(qū)間.
(III)當(dāng)時(shí),過點(diǎn)存在函數(shù)曲線的切線,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=f(x)的定義域?yàn)椋ī乤,0)∪(0,a)(0<a<1),其圖象上任意一點(diǎn)P(x,y)滿足x2+y2=1,則給出以下四個(gè)命題:①函數(shù)y=f(x)一定是偶函數(shù);②函數(shù)y=f(x)可能是奇函數(shù);③函數(shù)y=f(x)在(0,a)上單調(diào)遞增④若函數(shù)y=f(x)是偶函數(shù),則其值域?yàn)椋╝2 , 1)其中正確的命題個(gè)數(shù)為( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某旅游區(qū)擬建一主題游樂園,該游樂區(qū)為五邊形區(qū)域ABCDE,其中三角形區(qū)域ABE為主題游樂區(qū),四邊形區(qū)域?yàn)锽CDE為休閑游樂區(qū),AB、BC,CD,DE,EA,BE為游樂園的主要道路(不考慮寬度)..
(I)求道路BE的長度;
(Ⅱ)求道路AB,AE長度之和的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的袋子中裝有個(gè)形狀相同的小球,分別標(biāo)有不同的數(shù)字,現(xiàn)從袋中隨機(jī)摸出個(gè)球,并計(jì)算摸出的這個(gè)球上的數(shù)字之和,記錄后將小球放回袋中攪勻,進(jìn)行重復(fù)試驗(yàn).記事件為“數(shù)字之和為”.試驗(yàn)數(shù)據(jù)如下表:
(1)如果試驗(yàn)繼續(xù)下去,根據(jù)上表數(shù)據(jù),出現(xiàn)“數(shù)字之和為”的頻率將穩(wěn)定在它的概率附近.試估計(jì)“出現(xiàn)數(shù)字之和為”的概率,并求的值;
(2)在(1)的條件下,設(shè)定一種游戲規(guī)則:每次摸球,若數(shù)字和為,則可獲得獎金元,否則需交元.某人摸球次,設(shè)其獲利金額為隨機(jī)變量元,求的數(shù)學(xué)期望和方差.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求曲線在點(diǎn)處的切線方程;
(Ⅱ)求函數(shù)在上的最大值;
(Ⅲ)求證:存在唯一的,使得.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com