如圖,直角坐標(biāo)系xOy所在平面為α,直角坐標(biāo)系x′Oy′(其中y′與y軸重合)所在的平面為β,∠xOx′=45°.
(Ⅰ)已知平面β內(nèi)有一點(diǎn)P′(2數(shù)學(xué)公式,2),則點(diǎn)P′在平面α內(nèi)的射影P的坐標(biāo)為________;
(Ⅱ)已知平面β內(nèi)的曲線C′的方程是(x′-數(shù)學(xué)公式2+2y2-2=0,則曲線C′在平面α內(nèi)的射影C的方程是________.

(2,2)    (x-1)2+y2=1
分析:(I)根據(jù)兩個(gè)坐標(biāo)系之間的關(guān)系,由題意知點(diǎn)P在平面上的射影P距離x軸的距離不變是2,距離y軸的距離變成2cos45°,寫出坐標(biāo).
(II)設(shè)出所給的圖形上的任意一點(diǎn)的坐標(biāo),根據(jù)兩坐標(biāo)系之間的坐標(biāo)關(guān)系,寫出這點(diǎn)的對(duì)應(yīng)的點(diǎn),根據(jù)所設(shè)的點(diǎn)滿足所給的方程,代入求出方程.
解答:(I)由題意知點(diǎn)P在平面上的射影P距離x軸的距離不變是2,
距離y軸的距離變成2cos45°=2,
∴點(diǎn)P′在平面α內(nèi)的射影P的坐標(biāo)為(2,2)
(II)設(shè)(x′-2+2y2-2=0上的任意點(diǎn)為A(x0,y0),A在平面α上的射影是(x,y)
根據(jù)上一問的結(jié)果,得到x=x0,y=y0
,

∴(x-1)2+y2=1,
故答案為:(2,2);(x-1)2+y2=1
點(diǎn)評(píng):本題考查平行投影及平行投影作圖法,考查兩個(gè)坐標(biāo)系之間的坐標(biāo)關(guān)系,是一個(gè)比較簡單的題目,認(rèn)真讀題會(huì)得分.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在平面直角坐標(biāo)系xOy中,已知橢圓C:
x23
+y2=1
.如圖所示,斜率為k(k>0)且不過原點(diǎn)的直線l交橢圓C于A,B兩點(diǎn),線段AB的中點(diǎn)為E,射線OE交橢圓C于點(diǎn)G,交直線x=-3于點(diǎn)D(-3,m).
(Ⅰ)求m2+k2的最小值;
(Ⅱ)若|OG|2=|OD|?|OE|,
(i)求證:直線l過定點(diǎn);
(ii)試問點(diǎn)B,G能否關(guān)于x軸對(duì)稱?若能,求出此時(shí)△ABG的外接圓方程;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•嘉定區(qū)一模)如圖,在平面直角坐標(biāo)系xOy中,橢圓
x2
a2
+
y2
b2
=1(a>b>0)被圍于由4條直線x=±a,y=±b所圍成的矩形ABCD內(nèi),任取橢圓上一點(diǎn)P,若
OP
=m•
OA
+n•
OB
(m、n∈R),則m、n滿足的一個(gè)等式是
m2+n2=
1
2
m2+n2=
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•日照一模)已知長方形EFCD,|EF|=2,|FC|=
2
2
.以EF的中點(diǎn)O為原點(diǎn),建立如圖所示的平面直角坐標(biāo)系xOy.
(Ⅰ)求以E,F(xiàn)為焦點(diǎn),且過C,D兩點(diǎn)的橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)在(I)的條件下,過點(diǎn)F做直線l與橢圓交于不同的兩點(diǎn)A、B,設(shè)
FA
FB
,點(diǎn)T坐標(biāo)為(2,0),若λ∈[-2,-1],求|
TA
+
TB
|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(選修4-4:坐標(biāo)系與參數(shù)方程) (本小題滿分10分)

在直角坐標(biāo)系xoy中,直線的參數(shù)方程為(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xoy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為.

(Ⅰ)求圓C的直角坐標(biāo)方程;

(Ⅱ)設(shè)圓C與直線交于點(diǎn)A、B,若點(diǎn)P的坐標(biāo)為,求|PA|+|PB|.

23(本小題滿分10分)

 已知三棱錐P-ABC中,PA⊥平面ABC,AB⊥AC,,N為AB上一點(diǎn),AB=4AN, M、S分別為PB,BC的中點(diǎn).以A為原點(diǎn),射線AB,AC,AP分別為x,y,z軸正向建立如圖空間直角坐標(biāo)系.

(Ⅰ)證明:CM⊥SN;

(Ⅱ)求SN與平面CMN所成角的大小.

24.(本小題滿分10分)

將一枚硬幣連續(xù)拋擲次,每次拋擲互不影響. 記正面向上的次數(shù)為奇數(shù)的概率為,正面向上的次數(shù)為偶數(shù)的概率為.

 (Ⅰ)若該硬幣均勻,試求;

 (Ⅱ)若該硬幣有暇疵,且每次正面向上的概率為,試比較的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(選修4-4:坐標(biāo)系與參數(shù)方程) (本小題滿分10分)

在直角坐標(biāo)系xoy中,直線的參數(shù)方程為(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xoy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為.

(Ⅰ)求圓C的直角坐標(biāo)方程;

(Ⅱ)設(shè)圓C與直線交于點(diǎn)A、B,若點(diǎn)P的坐標(biāo)為,求|PA|+|PB|.

23(本小題滿分10分)

 已知三棱錐P-ABC中,PA⊥平面ABC,AB⊥AC,,N為AB上一點(diǎn),AB=4AN, M、S分別為PB,BC的中點(diǎn).以A為原點(diǎn),射線AB,AC,AP分別為x,y,z軸正向建立如圖空間直角坐標(biāo)系.

(Ⅰ)證明:CM⊥SN;

(Ⅱ)求SN與平面CMN所成角的大小.

24.(本小題滿分10分)

將一枚硬幣連續(xù)拋擲次,每次拋擲互不影響. 記正面向上的次數(shù)為奇數(shù)的概率為,正面向上的次數(shù)為偶數(shù)的概率為.

 (Ⅰ)若該硬幣均勻,試求

 (Ⅱ)若該硬幣有暇疵,且每次正面向上的概率為,試比較的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案