21、已知函數(shù)f(x)=lnx,g(x)=-ax2+bx,a≠0。

(Ⅰ)若b=2,且h(x)=f(x)-g(x)存在單調(diào)遞減區(qū)間,求a的取值范圍;

 

(Ⅱ)設(shè)函數(shù)f(x)的圖象C1與函數(shù)g(x)圖象C2交于點(diǎn)P、Q,過線段PQ的中點(diǎn)作x軸的垂線分別交C1,C2于點(diǎn)M、N,證明C1在點(diǎn)M處的切線與C2在點(diǎn)N處的切線不平行

21.解:(I),

因?yàn)楹瘮?shù)h(x)存在單調(diào)遞減區(qū)間,所以<0有解.

又因?yàn)?I>x>0時(shí),則ax2+2x-1>0有x>0的解.

①當(dāng)a>0時(shí),y=ax2+2x-1為開口向上的拋物線,ax2+2x-1>0總有x>0的解;

②當(dāng)a<0時(shí),y=ax2+2x-1為開口向下的拋物線,而ax2+2x-1>0有x>0的解;

則△=4+4a>0,且方程ax2+2x-1=0至少有一正根.此時(shí),-1<a<0.

綜上所述,a的取值范圍為(-1,0)∪(0,+∞).

    (II)證法一  設(shè)點(diǎn)P、Q的坐標(biāo)分別是(x1, y1),(x2, y2),0<x1<x2.

     則點(diǎn)M、N的橫坐標(biāo)為

     C1在點(diǎn)M處的切線斜率為

     C2在點(diǎn)N處的切線斜率為

     假設(shè)C1在點(diǎn)M處的切線與C2在點(diǎn)N處的切線平行,則k1=k2.

     即,則

              =

       所以 

設(shè)

       令

       因?yàn)?SUB>時(shí),,所以)上單調(diào)遞增. 故

       則. 這與①矛盾,假設(shè)不成立.

       故C1在點(diǎn)M處的切線與C2在點(diǎn)N處的切線不平行.

證法二:同證法一得

       因?yàn)?SUB>,所以

       令,得  ②

       令

       因?yàn)?SUB>,所以時(shí),

       故在[1,+上單調(diào)遞增.從而,即

       于是在[1,+上單調(diào)遞增.

       故這與②矛盾,假設(shè)不成立.

       故C1在點(diǎn)M處的切線與C2在點(diǎn)N處的切線不平行.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2-2x+1,g(x)=ln(x+1).

(1)求函數(shù)y=g(x)-x在[0,1]上的最小值;

(2)當(dāng)a≥時(shí),函數(shù)t(x)=f(x)+g(x)的圖像記為曲線C,曲線C在點(diǎn)(0,1)處的切線為l,是否存在a使l與曲線C有且僅有一個(gè)公共點(diǎn)?若存在,求出所有a的值;否則,說明理由.

(3)當(dāng)x≥0時(shí),g(x)≥-f(x)+恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆湖北省大治二中高二3月聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=x3+x-16,

(1)求曲線y=f(x)在點(diǎn)(2,-6)處的切線的方程;

(2)直線l為曲線y=f(x)的切線,且經(jīng)過原點(diǎn),求直線l的方程及切點(diǎn)坐標(biāo);

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年陜西省高二下期第一次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=x3-3x及y=f(x)上一點(diǎn)P(1,-2),過點(diǎn)P作直線l.

(1)求使直線l和y=f(x)相切且以P為切點(diǎn)的直線方程;

(2)求使直線l和y=f(x)相切且切點(diǎn)異于P的直線方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:新課標(biāo)高三數(shù)學(xué)導(dǎo)數(shù)專項(xiàng)訓(xùn)練(河北) 題型:解答題

已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在x=1處的切線為l:3x-y+1=0,當(dāng)x=時(shí),y=f(x)有極值.

(1)求a、b、c的值;

(2)求y=f(x)在[-3,1]上的最大值和最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:新課標(biāo)高三數(shù)學(xué)導(dǎo)數(shù)專項(xiàng)訓(xùn)練(河北) 題型:解答題

已知函數(shù)f(x)=x3-2x2+ax(x∈R,a∈R),在曲線y=f(x)的所有切線中,有且僅有一條切線l與直線y=x垂直.

(1)求a的值和切線l的方程;

(2)設(shè)曲線y=f(x)上任一點(diǎn)處的切線的傾斜角為θ,求θ的取值范圍

 

查看答案和解析>>

同步練習(xí)冊答案