已知函數(shù)f(x)=
cos4x-1
2cos(
π
2
+2x)
+cos2x-sin2x.
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞減區(qū)間;
(2)在所給坐標(biāo)系中畫出函數(shù)在區(qū)間[
π
3
3
]的圖象(用五點法作圖).
考點:三角函數(shù)中的恒等變換應(yīng)用,三角函數(shù)的周期性及其求法,由y=Asin(ωx+φ)的部分圖象確定其解析式
專題:三角函數(shù)的圖像與性質(zhì)
分析:(1)利用二倍角公式和兩角和公式對函數(shù)解析式化簡,根據(jù)周期公式求得最小正周期,根據(jù)正弦函數(shù)的單調(diào)性求得函數(shù)的單調(diào)減區(qū)間.
(2)利用五點法作圖.
解答: 解:(1)f(x)=
cos4x-1
2cos(
π
2
+2x)
+cos2x-sin2x=
-2sin22x
-2sin2x
+cos2x=sin2x+cos2x=
2
sin(2x+
π
4
),
∴T=
2
=π,
由2kπ+
π
2
≤2x+
π
4
≤2kπ+
2
,得kπ+
π
8
≤x≤kπ+
8
,k∈Z,
∴函數(shù)的單調(diào)減區(qū)間為[kπ+
π
8
,kπ+
8
](k∈Z).
(2)五點列表如下
x -
π
8
π
8
8
8
8
y 0 1 0 -1 0
點評:本題主要考查了三角函數(shù)恒等變換的應(yīng)用,三角函數(shù)圖象與性質(zhì).考查學(xué)生對三角函數(shù)基礎(chǔ)知識的理解和應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知AB,BC,CD為兩兩垂直的三條線段,且它們的長都等于1,則AD的長為( 。
A、1
B、2
C、3
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(ax+1)ex
(Ⅰ)若a=-1,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)a>0時,求函數(shù)f(x)在[-2,0]的最小值;
(Ⅲ)設(shè)n∈N,a=0,F(xiàn)(x)=f(x)-x,求證:
(n+1)(n+2)
2
en+1
e-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
3
cos2ωx+sinωxcosωx+a(其中ω>0,a∈R),且f(x)的最小正周期為π.
(1)求ω的值;
(2)如果f(x)在區(qū)間[-
π
6
12
]上的最小值為
3
2
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(2cosx,1),
b
=(cosx,
3
sin2x+m),f(x)=
a
b
;
(1)求函數(shù)在[0,π]上的單調(diào)增區(qū)間;
(2)當(dāng)x∈[0,
π
6
]時,f(x)的最大值為4,求實數(shù)m的值.(提示:
a
b
=x1x2+y1y2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

四棱錐P-ABCD的底面是邊長為a的正方形,側(cè)棱PA⊥底面ABCD,在側(cè)面PBC內(nèi)有BE⊥PC于E,且BE=
6
3
a.
(1)試在AB上找一點F,使EF∥平面PAD.
(2)在平面PAD上是否存在一點G,使GE⊥PBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(1,1),
b
=(-2,2),
c
=(2,k).
(1)若(
a
-
b
)∥
c
,求k的值.
(2)若
a
c
,求k的值.
(3)若
a
與 
c
的夾角為銳角,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

先閱讀下面的文字,再按要求解答.
如圖,在一個田字形地塊的A、B、C、D四個區(qū)域中栽種觀賞植物,要求同一區(qū)域種同一種植物,相鄰兩區(qū)域(A與D,B與C不相鄰)種不同的植物,現(xiàn)有四種不同的植物可供選擇,問不同的種植方案有多少種?
某學(xué)生給出如下的解答:
解:完成四個區(qū)域種植植物這件事,可分4步:
第一步:在區(qū)域A種植物,有C
 
1
4
種方法;
第二步:在區(qū)域B種植與區(qū)域A不同的植物,有C
 
1
3
種方法;
第三步:在區(qū)域D種植與區(qū)域B不同的植物,有C
 
1
3
種方法;
第四步:在區(qū)域C種植與區(qū)域A、D均不同的植物,有C
 
1
2
種方法.
根據(jù)分步計數(shù)原理,共有C
 
1
4
C
 
1
3
C
 
1
3
C
 
1
2
=72(種).
答:共有72種不同的種植方案.
問題:
(1)請你判斷上述的解答是否正確,并說明理由;
(2)請寫出你解答本題的過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的內(nèi)角A,B,C所對的邊長分別為a,b,c,且cosB=
4
5
,b=2.
(1)當(dāng)A=45°時,求a的值;
(2)當(dāng)a+c的值為2
10
時,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案