在△ABC中,∠BAC=120°,AB=2,BC=2
3
,則△ABC的面積是
 
分析:由∠BAC,AB,BC的值,利用余弦定理列出關(guān)于AC的方程,求出方程的解得到AC的長,然后由AC,AB及sin∠BAC,利用三角形的面積公式即可求出△ABC的面積.
解答:解:由∠BAC=120°,AB=2,BC=2
3

根據(jù)余弦定理得:(2
3
)
2
=22+AC2-4ACcos120°,即AC2+2AC-8=0,
即(AC-2)(AC+4)=0,解得AC=2,AC=-4(舍去),
根據(jù)三角形的面積公式得:
S△ABC=
1
2
AB•ACsin∠BAC=
1
2
×2×2×
3
2
=
3

故答案為:
3
點評:此題考查學生靈活運用余弦定理及特殊角的三角函數(shù)值化簡求值,掌握三角形的面積公式,是一道中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,在△ABC中,|
BA
|=|
BC
|
,延長CB到D,使
AC
AD
,若
AD
AB
AC
,則λ-μ的值是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,
BA
BC
=3,S△ABC∈[
3
2
,
3
3
2
]
,則∠B的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題:
(1)若函數(shù)f(x)=lg(x+
x2+a
),為奇函數(shù),則a=1;
(2)函數(shù)f(x)=|sinx|的周期T=π;
(3)已知
a
=(sinθ,
1+cosθ
),
b
=(1,
1-cosθ
)
,其中θ∈(π,
2
),則
a
b

(4)在△ABC中,
BA
=a,
AC
=b,若a•b<0,則△ABC是鈍角三角形
( 5)O是△ABC所在平面上一定點,動點P滿足:
OP
=
OA
+λ(
AB
sinC
+
AC
sinB
)
,λ∈(0,+∞),則直線AP一定通過△ABC的內(nèi)心.
以上命題為真命題的是
(1)(2)(3)(5)
(1)(2)(3)(5)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中
a+b
a-b
等于( 。
A、
sin(A+B)
sin(A-B)
B、
tan(A+B)
tan(A-B)
C、
sin
A+B
2
sin
A-B
2
D、
tan
A+B
2
tan
A-B
2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在△ABC中,
BA
BC
=3,S△ABC∈[
3
2
,
3
3
2
]
,則∠B的取值范圍是( 。
A.[
π
4
,
π
3
]
B.[
π
6
,
π
4
]
C.[
π
6
,
π
3
]
D.[
π
3
π
2
]

查看答案和解析>>

同步練習冊答案