【題目】已知數(shù)列{an}為等差數(shù)列,a1=1,前n項(xiàng)和為Sn,數(shù)列{bn}為等比數(shù)列,b1>1,公比為2,且b2S3=54,b3+S2=16.
(Ⅰ)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{cn}滿足cn=an+bn,求數(shù)列{cn}的前n項(xiàng)和Tn.
【答案】(Ⅰ) an=2n﹣1,; (Ⅱ)Tn.n2+3(2n﹣1).
【解析】
(Ⅰ)利用等差數(shù)列的前項(xiàng)和公式和等比數(shù)列的通項(xiàng)公式列式解方程組解得和,進(jìn)一步可得和;
(Ⅱ)利用等差數(shù)列與等比數(shù)列的前項(xiàng)和公式分組求和可得.
(Ⅰ)∵數(shù)列{an}為等差數(shù)列,a1=1,前n項(xiàng)和為Sn,數(shù)列{bn}為等比數(shù)列,
b1>1,公比為2,且b2S3=54,b3+S2=16.
∴,
解得b1=3,d=2,
∴an=2n﹣1,;
(Ⅱ)∵cn=an+bn=(2n﹣1)+32n﹣1.
∴Tn=c1+c2+…+cn=[1+3+…+(2n﹣1)]+3(1+2+22+…+2n﹣1)
n2+3(2n﹣1).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),函數(shù),,其中為常數(shù),且,令函數(shù)為函數(shù)和的積函數(shù).
(1)求函數(shù)的表達(dá)式,并求其定義域;
(2)當(dāng)時(shí),求函數(shù)的值域
(3)是否存在自然數(shù),使得函數(shù)的值域恰好為?若存在,試寫出所有滿足條件的自然數(shù)所構(gòu)成的集合;若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在新的勞動(dòng)合同法出臺(tái)后,某公司實(shí)行了年薪制工資結(jié)構(gòu)改革.該公司從2008年起,每人的工資由三個(gè)項(xiàng)目構(gòu)成,并按下表規(guī)定實(shí)施:
項(xiàng)目 | 金額[元/(人年)] | 性質(zhì)與計(jì)算方法 |
基礎(chǔ)工資 | 2007年基礎(chǔ)工資為20000元 | 考慮到物價(jià)因素,決定從2008年 起每年遞增10%(與工齡無關(guān)) |
房屋補(bǔ)貼 | 800 | 按職工到公司年限計(jì)算,每年遞增800元 |
醫(yī)療費(fèi) | 3200 | 固定不變 |
如果該公司今年有5位職工,計(jì)劃從明年起每年新招5名職工.
(1)若今年算第一年,將第n年該公司付給職工工資總額y(萬元)表示成年限n的函數(shù);
(2)若公司每年發(fā)給職工工資總額中,房屋補(bǔ)貼和醫(yī)療費(fèi)的總和總不會(huì)超過基礎(chǔ)工資總額的p%,求p的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=cos(asinx)﹣sin(bcosx)沒有零點(diǎn),則a2+b2的取值范圍是( )
A.[0,1)B.[0,π2)C.D.[0,π)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐S-ABCD中,底面ABCD為直角梯形,AD//BC,∠SAD =∠DAB= ,SA=3,SB=5,,,.
(1)求證:AB平面SAD;
(2)求平面SCD與平面SAB所成的銳二面角的余弦值;
(3)點(diǎn)E,F分別為線段BC,SB上的一點(diǎn),若平面AEF//平面SCD,求三棱錐B-AEF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右頂點(diǎn)、上頂點(diǎn)分別為A、B,坐標(biāo)原點(diǎn)到直線AB的距離為,且.
(1)求橢圓C的方程;
(2)過橢圓C的左焦點(diǎn)的直線交橢圓于M、N兩點(diǎn),且該橢圓上存在點(diǎn)P,使得四邊形MONP(圖形上字母按此順序排列)恰好為平行四邊形,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知矩形,,,將沿對角線進(jìn)行翻折,得到三棱錐,則在翻折的過程中,有下列結(jié)論正確的有_____.
①三棱錐的體積的最大值為;
②三棱錐的外接球體積不變;
③三棱錐的體積最大值時(shí),二面角的大小是60°;
④異面直線與所成角的最大值為90°.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)一批零件,為了解這批零件的質(zhì)量狀況,檢驗(yàn)員從這批產(chǎn)品中隨機(jī)抽取了100件作為樣本進(jìn)行檢測,將它們的重量(單位:g)作為質(zhì)量指標(biāo)值.由檢測結(jié)果得到如下頻率分布直方圖.
分組 | 頻數(shù) | 頻率 |
8 | ||
16 | 0.16 | |
4 | 0.04 | |
合計(jì) | 100 | 1 |
(1)求圖中的值;
(2)根據(jù)質(zhì)量標(biāo)準(zhǔn)規(guī)定:零件重量小于47或大于53為不合格品,重量在區(qū)間和內(nèi)為合格品,重量在區(qū)間內(nèi)為優(yōu)質(zhì)品.已知每件產(chǎn)品的檢測費(fèi)用為5元,每件不合格品的回收處理費(fèi)用為20元.以抽檢樣本重量的頻率分布作為該零件重量的概率分布.若這批零件共件,現(xiàn)有兩種銷售方案:方案一:不再檢測其他零件,整批零件除對已檢測到的不合格品進(jìn)行回收處理,其余零件均按150元/件售出;方案二:繼續(xù)對剩余零件的重量進(jìn)行逐一檢測,回收處理所有不合格品,合格品按150元/件售出,優(yōu)質(zhì)品按200元/件售出.僅從獲得利潤大的角度考慮,該生產(chǎn)商應(yīng)選擇哪種方案?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如題所示:扇形ABC是一塊半徑為2千米,圓心角為60°的風(fēng)景區(qū),P點(diǎn)在弧BC上,現(xiàn)欲在風(fēng)景區(qū)中規(guī)劃三條三條商業(yè)街道PQ、QR、RP,要求街道PQ與AB垂直,街道PR與AC垂直,直線PQ表示第三條街道。
(1)如果P位于弧BC的中點(diǎn),求三條街道的總長度;
(2)由于環(huán)境的原因,三條街道PQ、PR、QR每年能產(chǎn)生的經(jīng)濟(jì)效益分別為每千米300萬元、200萬元及400萬元,問:這三條街道每年能產(chǎn)生的經(jīng)濟(jì)總效益最高為多少?(精確到1萬元)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com