(理)(14分)設(shè)函數(shù),其中
(I)當(dāng)時(shí),判斷函數(shù)在定義域上的單調(diào)性;
(II)求函數(shù)的極值點(diǎn);
(III)證明對(duì)任意的正整數(shù)n,不等式都成立.
(1)在定義域是增函數(shù);(2)見(jiàn)解析;(3)見(jiàn)解析.
(1)先確定函數(shù)的定義域,求得在定義域上是增函數(shù);
(2)由(1)得在定義域上是增函數(shù),不存在極值點(diǎn);有兩個(gè)根,判斷兩個(gè)根是否在定義域內(nèi),判定單調(diào)性即得到函數(shù)的極值;
(3)令構(gòu)造函數(shù),判斷單調(diào)性可得,令,就可以證得結(jié)論。
 
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)取得極值
(1)求的單調(diào)區(qū)間(用表示);
(2)設(shè),,若存在,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)當(dāng)a=﹣2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若g(x)= +1,+∞)上是單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)處取得極值,
(1)求實(shí)數(shù)的值;
(2)若關(guān)于的方程在區(qū)間上恰有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知三次函數(shù)
(1)若函數(shù)過(guò)點(diǎn)且在點(diǎn)處的切線方程是,求函數(shù)的解析式;
(2)在(1)的條件下,若對(duì)于區(qū)間上任意兩個(gè)自變量的值,都有,求實(shí)數(shù)的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分10 分)已知函數(shù)f(x)=x3-ax2+3x.
(1) 若x=3是f(x)的極值點(diǎn),求f(x)在x∈[1,a]上的最大值和最小值.
(2) 若f(x)在x∈[1,+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)= x/4+ln(x-2)/(x-4),(1)求函數(shù)f)x)的定義域和極值;(2)若函數(shù)(fx)在區(qū)間[a2-5a,8-3a]上為增函數(shù),求實(shí)數(shù)a的取值范圍;(3)函數(shù)f(x)的圖象是否為中心對(duì)稱圖形?若是請(qǐng)指出對(duì)稱中心,并證明;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

f'(x)是f(x)的導(dǎo)函數(shù),f'(x)的圖象如右圖所示,則f(x)的圖象只可能是(   )
(A)       (B)      (C)     (D)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=x2-(2a+1)x+alnx.
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)求函數(shù)f(x)在區(qū)間[1,e]上的最小值;

查看答案和解析>>

同步練習(xí)冊(cè)答案