(2013•寧波二模)設(shè)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),對任意x∈R都有f′(x)>f(x)成立,則(  )
分析:構(gòu)造函數(shù)g(x)=
f(x)
ex
,利用導(dǎo)數(shù)可判斷g(x)的單調(diào)性,由單調(diào)性可得g(ln2)與g(ln3)的大小關(guān)系,整理即可得到答案.
解答:解:令g(x)=
f(x)
ex
,則g′(x)=
f′(x)•ex-f(x)•ex
e2x
=
f′(x)-f(x)
ex
,
因為對任意x∈R都有f'(x)>f(x),
所以g′(x)>0,即g(x)在R上單調(diào)遞增,
又ln2<ln3,所以g(ln2)<g(ln3),即
f(ln2)
eln2
f(ln3)
eln3
,
所以
f(ln2)
2
f(ln3)
3
,即3f(ln2)<2f(ln3),
故選C.
點評:本題考查導(dǎo)數(shù)的運算及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,屬中檔題,解決本題的關(guān)鍵是根據(jù)選項及已知條件合理構(gòu)造函數(shù),利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寧波二模)設(shè)公比大于零的等比數(shù)列{an}的前n項和為Sn,且a1=1,S4=5S2,數(shù)列{bn}的前n項和為Tn,滿足b1=1,Tn=n2bn,n∈N*
(Ⅰ)求數(shù)列{an}、{bn}的通項公式;
(Ⅱ)設(shè)Cn=(Sn+1)(nbn-λ),若數(shù)列{Cn}是單調(diào)遞減數(shù)列,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寧波二模)已知函數(shù)f(x)=a(x-1)2+lnx.a(chǎn)∈R.
(Ⅰ)當(dāng)a=-
1
4
時,求函數(shù)y=f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)x∈[1,+∞)時,函數(shù)y=f(x)圖象上的點都在不等式組
x≥1
y≤x-1
所表示的區(qū)域內(nèi),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寧波二模)如圖是某學(xué)校抽取的n個學(xué)生體重的頻率分布直方圖,已知圖中從左到右的前3個小組的頻率之比為1:2:3,第3個小組的頻數(shù)為18,則的值n是
48
48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寧波二模)已知兩非零向量
a
,
b
,則“
a
b
=|
a
||
b
|”是“
a
b
共線”的(  )

查看答案和解析>>

同步練習(xí)冊答案