14.從區(qū)間(0,2)上任取一個(gè)實(shí)數(shù)m,則直線x-$\sqrt{3}$y=0與圓(x-1)2+y2=m(m>0)相交的概率為( 。
A.$\frac{7}{8}$B.$\frac{3}{4}$C.$\frac{1}{2}$D.$\frac{1}{4}$

分析 求出圓心到直線x-$\sqrt{3}$y=0的距離d<r時(shí)m的取值范圍,再用幾何概型的概率公式計(jì)算即可.

解答 解:根據(jù)題意,圓(x-1)2+y2=m(m>0)的圓心C(1,0),半徑r=$\sqrt{m}$;
則圓心到直線x-$\sqrt{3}$y=0的距離為
d=$\frac{|1-0|}{\sqrt{1+3}}$=$\frac{1}{2}$<$\sqrt{m}$,
解得m>$\frac{1}{4}$;
∴直線x-$\sqrt{3}$y=0與圓(x-1)2+y2=m(m>0)相交的概率為:
P=$\frac{2-\frac{1}{4}}{2-0}$=$\frac{7}{8}$.
故選:A.

點(diǎn)評(píng) 本題考查了點(diǎn)到直線的距離公式以及幾何概型的概率計(jì)算問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,$b=\sqrt{3},c=3,B={30°}$,則邊a=$\sqrt{3}$或2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知兩組相關(guān)數(shù)據(jù)如表,其線性回歸方程為$\stackrel{∧}{y}$=x+$\frac{6}{5}$,表中缺失的數(shù)據(jù)m以及當(dāng)x=15時(shí)$\stackrel{∧}{y}$的值n,則m+n=$\frac{136}{5}$.
 x 5 7 9 11 13
 y 6 8 m 12 14

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知定義在R上的函數(shù)f(x)=$\frac{b-{2}^{x}}{{2}^{x}+a}$是奇函數(shù)
(1)求a,b的值;
(2)若對(duì)任意的t∈R,不等式f(t-2t2)+f(-k)>0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=xlnx-ax2+(2a-1)x,a∈R.
(1)令g(x)為f(x)的導(dǎo)函數(shù),求g(x)單調(diào)區(qū)間;
(2)已知函數(shù)f(x)在x=1處取得極大值,求實(shí)數(shù)a取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知變量x,y滿足約束條件$\left\{\begin{array}{l}{x≥2}\\{y≤4}\\{3x-2y≤6}\end{array}\right.$,則z=3x+y的最大值為18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.設(shè)空間向量$\overrightarrow{AB}$=(m,m,1),$\overrightarrow{CD}$=(1,0,n-1).
(1)若A、B、C、D四點(diǎn)共面,且平面ABC的一個(gè)法向量為$\overrightarrow{a}$=(4,2,-1),求$\frac{n}{m}$的值
(2)若m>0.n>0,且$\overrightarrow{AB}$⊥$\overrightarrow{CD}$,求mn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖所示,四棱錐P-ABCD的底面為正方形,側(cè)棱PA⊥底面ABCD,且PA=AD,E、F、H分別是線段PA、PD、AB的中點(diǎn).求證:
(1)PB∥平面EFH;
(2)PD⊥平面AHF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知f(x)=loga($\sqrt{{x}^{2}+1}$-x),(a>0,a≠1),f(2)=2,則f(-2)=-2.

查看答案和解析>>

同步練習(xí)冊(cè)答案