【題目】下列說法中正確的是(

A.先把高二年級(jí)的2000名學(xué)生編號(hào):12000,再從編號(hào)為150的學(xué)生中隨機(jī)抽取1名學(xué)生,其編號(hào)為,然后抽取編號(hào)為,,…的學(xué)生,這種抽樣方法是分層抽樣法

B.線性回歸直線不一定過樣本中心

C.若一個(gè)回歸直線方程為,則變量每增加一個(gè)單位時(shí),平均增加3個(gè)單位

D.若一組數(shù)據(jù)24,,8的平均數(shù)是5,則該組數(shù)據(jù)的方差也是5

【答案】D

【解析】

根據(jù)系統(tǒng)抽樣,樣本中心點(diǎn),回歸直線,平均數(shù),方差,對(duì)各選項(xiàng)逐一判斷即可.

對(duì)于A:根據(jù)個(gè)體數(shù)目較多,且沒有明顯的差異,抽取樣本間隔相等,知這種抽樣方法是系統(tǒng)抽樣法,故A錯(cuò)誤;

對(duì)于B:線性回歸直線一定過樣本中心,故B錯(cuò)誤;

對(duì)于C:對(duì)回歸直線,當(dāng)變量每增加一個(gè)單位時(shí),平均減少3個(gè)單位,故C錯(cuò)誤;

對(duì)于D:一組數(shù)據(jù)2,4,8的平均數(shù)是5,,

所以該組數(shù)據(jù)的方差為,故D正確.

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】宋元時(shí)期數(shù)學(xué)名著《算學(xué)啟蒙》中有關(guān)于“松竹并生”的問題:松長五尺,竹長兩尺,松日自半,竹日自倍,松竹何日而長等.如圖是源于其思想的一個(gè)程序框圖,若輸入,,則輸出的等于( )

A. 3B. 4C. 5D. 6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

(1)若,求的取值范圍;

(2)若的圖像與軸圍成的封閉圖形面積為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知m是實(shí)數(shù),關(guān)于x的方程Ex2mx+2m+1)=0

1)若m2,求方程E在復(fù)數(shù)范圍內(nèi)的解;

2)若方程E有兩個(gè)虛數(shù)根x1x2,且滿足|x1x2|2,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線Γ的方程為y24x,點(diǎn)P的坐標(biāo)為(11).

1)過點(diǎn)P,斜率為﹣1的直線l交拋物線ΓU,V兩點(diǎn),求線段UV的長;

2)設(shè)Q是拋物線Γ上的動(dòng)點(diǎn),R是線段PQ上的一點(diǎn),滿足2,求動(dòng)點(diǎn)R的軌跡方程;

3)設(shè)AB,CD是拋物線Γ的兩條經(jīng)過點(diǎn)P的動(dòng)弦,滿足ABCD.點(diǎn)MN分別是弦ABCD的中點(diǎn),是否存在一個(gè)定點(diǎn)T,使得M,NT三點(diǎn)總是共線?若存在,求出點(diǎn)T的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐PABCD的底面ABCD是矩形,PA⊥底面ABCD,點(diǎn)E、F分別是棱PC、PD的中點(diǎn),則

①棱ABPD所在直線垂直;

②平面PBC與平面ABCD垂直;

③△PCD的面積大于△PAB的面積;

④直線AE與直線BF是異面直線.

以上結(jié)論正確的是________.(寫出所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的左、右焦點(diǎn)分別為,右頂點(diǎn)為A,上頂點(diǎn)為B,且滿足向量 。

(1),求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)為橢圓上異于頂點(diǎn)的點(diǎn),以線段PB為直徑的圓經(jīng)過F1,問是否存在過F2的直線與該圓相切?若存在,求出其斜率;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),對(duì)任意,都有.

討論的單調(diào)性;

當(dāng)存在三個(gè)不同的零點(diǎn)時(shí),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為實(shí)數(shù)常數(shù))

1)當(dāng)時(shí),求函數(shù)上的單調(diào)區(qū)間;

2)當(dāng)時(shí),成立,求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案