精英家教網(wǎng)如圖,在等腰梯形ABCD中,AB=2DC=2,∠DAB=60°,E為AB的中點(diǎn),將△ADE與△BEC分別沿ED、EC向上折起,使A、B重合于點(diǎn)P,則P-DCE三棱錐的外接球的體積為( 。
A、
4
3
π
27
B、
6
π
2
C、
6
π
8
D、
6
π
24
分析:判定三棱錐的形狀,然后求出它的外接球的半徑,再求體積.
解答:解:易證所得三棱錐為正四面體,它的棱長為1,
故外接球半徑為
6
4
,外接球的體積為
4
3
π(
6
4
)3=
6
8
π

故選C.
點(diǎn)評:本題考查球的內(nèi)接多面體,球的體積等知識,考查邏輯思維能力,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在等腰梯形ABCD中,AB∥DC,AB=4,CD=2,等腰梯形的高為3,O為AB中點(diǎn),PO⊥平面ABCD,垂足為O,PO=2,EA∥PO.
(1)求證:BD⊥平面EAC;
(2)求二面角E-AC-P的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在等腰梯形CDEF中,CB、DA是梯形的高,AE=BF=2,AB=2
2
,現(xiàn)將梯形沿CB、DA折起,使EF∥AB,且EF=2AB,得一簡單組合體ABCDEF如圖所示,已知M、N、P分別為AF,BD,EF的中點(diǎn).
(1)求證:MN∥平面BCF;
(2)求證:AP⊥平面DAE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-1;幾何證明選講.
如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,過點(diǎn)D作AC的平行線DE,交BA的延長線于點(diǎn)E.
求證:DE•DC=AE•BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•河北模擬)如圖,在等腰梯形ABCD中,CD=2,AB=4,AD=BC=
2
,E、F分別為CD、AB中點(diǎn),沿EF將梯形AFED折起,使得∠AFB=60°,點(diǎn)G為FB的中點(diǎn).
(1)求證:AG⊥平面BCEF
(2)求DG的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在等腰梯形ABCD中,上底CD=3,下底AB=4,E、F分別為AB、CD中點(diǎn),分別沿DE、CE把△ADE與△BCE折起,使A、B重合于點(diǎn)P.

(1)求證:PE⊥CD;
(2)若點(diǎn)P在面CDE的射影恰好是點(diǎn)F,求EF的長.

查看答案和解析>>

同步練習(xí)冊答案