定義:在直角坐標(biāo)系中,若不在一直線(xiàn)上的三點(diǎn)A、B、C的坐標(biāo)分別為(x1,y1)、(x2,y2)、(x3,y3),則三角形ABC的面積可以表示為S△ABC=.已知拋物線(xiàn)y2=4x,過(guò)拋物線(xiàn)焦點(diǎn)F斜率為的直線(xiàn)l與拋物線(xiàn)交于A、B兩點(diǎn).
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)若P(3,0),試用行列式計(jì)算三角形面積的方法求四邊形APBO的面積S.
【答案】分析:(1)求出拋物線(xiàn)的焦點(diǎn)的坐標(biāo),用點(diǎn)斜式求得直線(xiàn)AB的方程,代入拋物線(xiàn)y2=4x的方程化簡(jiǎn),
利用一元二次方程根與系數(shù)的關(guān)系,求出 x1,x2,y1,y2的值,即可求得A、B兩點(diǎn)的坐標(biāo);
(2)由題意知,A(4,4),,P(3,0),O(0,0)
則四邊形APBO的面積S=+=
解答:解:(1)拋物線(xiàn)y2=4x中,p=2,,故拋物線(xiàn)的焦點(diǎn)的坐標(biāo)為(1,0),
設(shè)A、B兩點(diǎn)的坐標(biāo)分別為(x1,y1)和(x2,y2 ),
由題意有可得 直線(xiàn)AB的方程為  y-0=(x-1),即 y=(x-1),
代入拋物線(xiàn)y2=4x的方程化簡(jiǎn)可得  y2-3x-4=0,
∴y1=-1,y2=4,則x1=,x2=4
故A(4,4)、
(2)由于不在一直線(xiàn)上的三點(diǎn)A、B、C的坐標(biāo)分別為(x1,y1)、(x2,y2)、(x3,y3),
則三角形ABC的面積可以表示為S△ABC=
又由A(4,4)、,
則四邊形APBO的面積S=S△AOB+S△APB
=+=
點(diǎn)評(píng):本題考查直線(xiàn)和圓錐曲線(xiàn)的位置關(guān)系,一元二次方程根與系數(shù)的關(guān)系,求出x1,x2,y1,y2的值,是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系中,定義:(xn,yn)
11
1-1
=(xn+1,yn+1)
,即
xn+1=xn+yn
yn+1=xn-yn
(n∈N*)為點(diǎn)Pn(xn,yn)到點(diǎn)Pn+1(xn+1,yn+1)的一個(gè)變換.我們把它稱(chēng)為點(diǎn)變換(或矩陣變換).已知P1(1,0).
(1)求直線(xiàn)y=x在矩陣變換下的直線(xiàn)方程;
(2)設(shè)dn=|OPn|2(n∈N*),求證:dn為等比數(shù)列,并寫(xiě)出dn的通項(xiàng)公式;
(3)設(shè)P2(x2,y2)…,Pn(xn+1,yn+1)(n∈N*)是經(jīng)過(guò)點(diǎn)變換得到的一列點(diǎn).求數(shù)列xn,yn的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:在直角坐標(biāo)系中,若不在一直線(xiàn)上的三點(diǎn)A、B、C的坐標(biāo)分別為(x1,y1)、(x2,y2)、(x3,y3),則三角形ABC的面積可以表示為S△ABC=|
1
2
.
x1 y1  1
x2y2     1
x3y3    1
.
|
.已知拋物線(xiàn)y2=4x,過(guò)拋物線(xiàn)焦點(diǎn)F斜率為
4
3
的直線(xiàn)l與拋物線(xiàn)交于A、B兩點(diǎn).
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)若P(3,0),試用行列式計(jì)算三角形面積的方法求四邊形APBO的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系中,如果不同兩點(diǎn)A(a,b),B(-a,-b)都在函數(shù)y=h (x )的圖象上,那么稱(chēng)[A,B]為函數(shù)h(x)的一組“友好點(diǎn)”([A,B]與[B,A]看作一組).已知定義在[0,+∞)上的函數(shù)f(x)滿(mǎn)足f(x+2)=
2
f(x),且當(dāng)x∈[0,2]時(shí),f(x)=sin
π
2
x.則函數(shù)f(x)=
f(x),0<x≤8
-
-x
,-8≤x<0
的“友好點(diǎn)”的組數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

定義:在直角坐標(biāo)系中,若不在一直線(xiàn)上的三點(diǎn)A、B、C的坐標(biāo)分別為(x1,y1)、(x2,y2)、(x3,y3),則三角形ABC的面積可以表示為S△ABC=|
1
2
.
x1 y1  1
x2y2     1
x3y3    1
.
|
.已知拋物線(xiàn)y2=4x,過(guò)拋物線(xiàn)焦點(diǎn)F斜率為
4
3
的直線(xiàn)l與拋物線(xiàn)交于A、B兩點(diǎn).
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)若P(3,0),試用行列式計(jì)算三角形面積的方法求四邊形APBO的面積S.

查看答案和解析>>

同步練習(xí)冊(cè)答案