若不等式|x+1|+|x-3|≥a+
4a
對任意的實數(shù)x恒成立,則實數(shù)a的取值范圍是
 
分析:不等式|x+1|+|x-3| ≥a+
4
a
對任意的實數(shù)x恒成立轉(zhuǎn)化為a+
4
a
小于等于函數(shù)y=|x+1|+|x-3|的最小值,根據(jù)絕對值不等式的幾何意義可知函數(shù)y=|x+1|+|x-3|的最小值為4,因此原不等式轉(zhuǎn)化為分式不等式的求解問題.
解答:解:令y=|x+1|+|x-3|,由絕對值不等式的幾何意義可知函數(shù)y=|x+1|+|x-3|的最小值為4,
∵不等式|x+1|+|x-3| ≥a+
4
a
對任意的實數(shù)x恒成立
∴原不等式可化為a+
4
a
≤4
解得a=2或a<0
故答案為:(-∞,0)∪{2}.
點評:考查絕對值不等式的幾何意義,把恒成立問題轉(zhuǎn)化為求函數(shù)的最值問題,體現(xiàn)了轉(zhuǎn)化的思想方法,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(請在下列三題中任選一題作答,如果多做,則按所做的第一題評分)
A.(不等式選做題)若不等式|x+1|+|x-2|≥a對任意x∈R恒成立,則a的取值范圍是
 

B.(幾何證明選做題)如圖,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,則AE=
 

精英家教網(wǎng)
C.(坐標(biāo)系與參數(shù)方程選做題)直角坐標(biāo)系xoy中,以原點為極點,x軸的正半軸為極軸建極坐標(biāo)系,設(shè)點A,B分別在曲線C1
x=3+cosθ
y=sinθ
 (θ為參數(shù))和曲線C2:p=1上,則|AB|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式|x-1|<a成立的充分條件是0<x<4,則實數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式|x-1|<a成立的充分條件是0<x<4,則實數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(A)若不等式|x+1|-|x-4|≥a+
4
a
,對任意的x∈R恒成立,則實數(shù)a的取值范圍是
(-∞,4]∪[-1,0)
(-∞,4]∪[-1,0)

(B)已知直線l:
x=a+2t
y=-1-t
(t為參數(shù)),圓C:ρ=2
2
cos(θ-
π
4
)(極軸與x軸的非負(fù)半軸重合,且單位長度相同),若直線l被圓C截得弦長為2,則a=
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(考生注意:請在下列二題中任選一題作答,如果多做,則按所做的第一題評閱記分.)
(A)(選修4-4坐標(biāo)系與參數(shù)方程)曲線
x=cosα
y=a+sinα
(α為參數(shù))與曲線ρ2-2ρcosθ=0的交點個數(shù)為
 
個.
(B)(選修4-5不等式選講)若不等式|x+1|+|x-3| ≥a+
4
a
對任意的實數(shù)x恒成立,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案