由橢圓(a>b>0)的頂點(diǎn)B(0,-b)引弦BP,求BP長(zhǎng)的最大值.
【答案】分析:設(shè)橢圓(a>b>0)在x軸上的頂點(diǎn)分別為E(-a,0)、F(a,0),結(jié)合圖形可知BP長(zhǎng)的最大值是BE和BF的長(zhǎng),用兩點(diǎn)間距離公式能夠推導(dǎo)出BP長(zhǎng)的最大值.
解答:解:設(shè)橢圓(a>b>0),
在x軸上的頂點(diǎn)分別為E(-a,0)、F(a,0),
結(jié)合圖形可知BP長(zhǎng)的最大值是BE和BF的長(zhǎng),其最大值為|BE|=
答案:
點(diǎn)評(píng):本題考查橢圓的性質(zhì),作出圖形數(shù)形結(jié)合事半功倍.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

由橢圓數(shù)學(xué)公式(a>b>0)的頂點(diǎn)B(0,-b)引弦BP,求BP長(zhǎng)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年北京市順義區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

已知橢圓C:,(a>b>0)的兩焦點(diǎn)分別為F1、F2,,離心率.過(guò)直線(xiàn)l:上任意一點(diǎn)M,引橢圓C的兩條切線(xiàn),切點(diǎn)為A、B.
(1)在圓中有如下結(jié)論:“過(guò)圓x2+y2=r2上一點(diǎn)P(x,y)處的切線(xiàn)方程為:xx+yy=r2”.由上述結(jié)論類(lèi)比得到:“過(guò)橢圓(a>b>0),上一點(diǎn)P(x,y)處的切線(xiàn)方程”(只寫(xiě)類(lèi)比結(jié)論,不必證明).
(2)利用(1)中的結(jié)論證明直線(xiàn)AB恒過(guò)定點(diǎn)();
(3)當(dāng)點(diǎn)M的縱坐標(biāo)為1時(shí),求△ABM的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年上海市普陀區(qū)高考數(shù)學(xué)二模試卷(文理合卷)(解析版) 題型:解答題

如圖,已知半徑為r的圓M的內(nèi)接四邊形ABCD的對(duì)角線(xiàn)AC和BD相互垂直且交點(diǎn)為P.

(1)若四邊形ABCD中的一條對(duì)角線(xiàn)AC的長(zhǎng)度為d(0<d<2r),試求:四邊形ABCD面積的最大值;
(2)試探究:當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABCD的面積取得最大值,最大值為多少?
(3)對(duì)于之前小題的研究結(jié)論,我們可以將其類(lèi)比到橢圓的情形.如圖2,設(shè)平面直角坐標(biāo)系中,已知橢圓(a>b>0)的內(nèi)接四邊形ABCD的對(duì)角線(xiàn)AC和BD相互垂直且交于點(diǎn)P.試提出一個(gè)由類(lèi)比獲得的猜想,并嘗試給予證明或反例否定.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年北京市一模試卷及高頻考點(diǎn)透析:推理與證明 幾何證明選講(解析版) 題型:解答題

已知橢圓C:,(a>b>0)的兩焦點(diǎn)分別為F1、F2,,離心率.過(guò)直線(xiàn)l:上任意一點(diǎn)M,引橢圓C的兩條切線(xiàn),切點(diǎn)為A、B.
(1)在圓中有如下結(jié)論:“過(guò)圓x2+y2=r2上一點(diǎn)P(x,y)處的切線(xiàn)方程為:xx+yy=r2”.由上述結(jié)論類(lèi)比得到:“過(guò)橢圓(a>b>0),上一點(diǎn)P(x,y)處的切線(xiàn)方程”(只寫(xiě)類(lèi)比結(jié)論,不必證明).
(2)利用(1)中的結(jié)論證明直線(xiàn)AB恒過(guò)定點(diǎn)();
(3)當(dāng)點(diǎn)M的縱坐標(biāo)為1時(shí),求△ABM的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案