【題目】已知數(shù)列項(xiàng)和為,且滿足,.

1)求數(shù)列的通項(xiàng)公式;

2)令,的前項(xiàng)和,求證:.

3)在(2)的條件下,若數(shù)列的前n項(xiàng)和為,,求證

4)請(qǐng)你說明第(3)問所用到的求和方法,哪些數(shù)列通項(xiàng)的模型適合此方法?請(qǐng)舉例說明.(至少列舉出三種)

【答案】12)證明見解析(3)證明見解析(4)裂項(xiàng)相消法,說明見解析(答案不唯一)

【解析】

1)當(dāng)時(shí),與條件作差可得,討論是否滿足,進(jìn)而求解即可;

2)由(1,,,進(jìn)行放縮可得,進(jìn)而利用裂項(xiàng)相消法求解即可;

3)由(2,,進(jìn)而利用裂項(xiàng)相消法求解即可;

4)第(3)問使用的是裂項(xiàng)相消的求和方法,舉例說明即可.

1)因?yàn)?/span>,

當(dāng)時(shí),,

所以,,

當(dāng)時(shí),,,

,,滿足上式,

所以數(shù)列是首項(xiàng)為2,公比為4的等比數(shù)列,

所以

2)證明:由(1,,

所以,

當(dāng)時(shí),,

3)證明:由(2,,

所以

4)第(3)問使用的是裂項(xiàng)相消法求數(shù)列的和,

;均適合該方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),(為常數(shù)).

(1)當(dāng)時(shí),判斷的單調(diào)性,并用定義證明;

(2)若對(duì)任意,不等式恒成立,求的取值范圍;

(3)討論零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A1,0),圓E:(x+12+y2=16,點(diǎn)B是圓E上任意一點(diǎn),線段AB的垂直平分線l與半徑EB相交于H.

1)當(dāng)點(diǎn)B在圓上運(yùn)動(dòng)時(shí),求動(dòng)點(diǎn)H的軌跡г的方程:

2)過點(diǎn)A且與坐標(biāo)軸不垂直的直線交軌跡г于、兩點(diǎn),線段OAO為坐標(biāo)原點(diǎn))上是否存在點(diǎn)使得若存在,求出實(shí)數(shù)m的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地?cái)M建造一座體育館,其設(shè)計(jì)方案側(cè)面的外輪廓線如圖所示:曲線是以點(diǎn)為圓心的圓的一部分,其中是圓的切線,且,曲線是拋物線的一部分,,且恰好等于圓的半徑.

1)若米,米,求的值;

2)若體育館側(cè)面的最大寬度不超過75米,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)為雙曲線的左、右焦點(diǎn),過作垂直于軸的直線,在軸上方交雙曲線于點(diǎn),且,圓的方程是.

1)求雙曲線的方程;

2)過雙曲線上任意一點(diǎn)作該雙曲線兩條漸近線的垂線,垂足分別為、,求的值;

3)過圓上任意一點(diǎn)作圓的切線交雙曲線、兩點(diǎn),中點(diǎn)為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項(xiàng)等比數(shù)列的前n項(xiàng)和,滿足,則的最小值為

A. B. 3 C. 4 D. 12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)的圖象上存在關(guān)于原點(diǎn)對(duì)稱的點(diǎn),求實(shí)數(shù)的取值范圍;

(2)設(shè),已知上存在兩個(gè)極值點(diǎn),且,求證:(其中為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,在曲線與直線的交點(diǎn)中,若相鄰交點(diǎn)距離的最小值為,則的最小正周期為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足,,其前n項(xiàng)和,則下列說法正確的個(gè)數(shù)是(

①數(shù)列是等差數(shù)列;②;③.

A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案